10673

Scalable Fast Multipole Methods on Heterogeneous Architecture

Q. Hu
University of Maryland, College Park

@article{hu2013scalable,

   title={Scalable Fast Multipole Methods on Heterogeneous Architecture},

   author={Hu, Qi},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

1879

views

The N-body problem appears in many computational physics simulations. At each time step the computation involves an all-pairs sum whose complexity is quadratic, followed by an update of particle positions. This cost means that it is not practical to solve such dynamic N-body problems on large scale. To improve this situation, we use both algorithmic and hardware approaches. Our algorithmic approach is to use the Fast Multipole Method (FMM), which is a divide-and-conquer algorithm that performs a fast N-body sum using a spatial decomposition and is often used in a time-stepping or iterative loop, to reduce such quadratic complexity to linear with guaranteed accuracy. Our hardware approach is to use heterogeneous clusters, which comprised of nodes that contain multi-core CPUs tightly coupled with accelerators, such as graphics processors unit (GPU) as our underline parallel processing hardware, on which efficient implementations require highly non-trivial re-designed algorithms. In this dissertation, we fundamentally reconsider the FMM algorithms on heterogeneous architectures to achieve a significant improvement over recent/previous implementations in literature and to make the algorithm ready for use as a workhorse simulation tool for both time-dependent vortex flow problems and for boundary element methods. Our major contributions include: 1. Novel FMM data structures using parallel construction algorithms for dynamic problems. 2. A fast hetegenenous FMM algorithm for both single and multiple computing nodes. 3. An efficient inter-node communication management using fast parallel data structures. 4. A scalable FMM algorithm using novel Helmholz decomposition for Vortex Methods (VM). The proposed algorithms can handle non-uniform distributions with irregular partition shapes to achieve workload balance and their MPI-CUDA implementations are highly tuned up and demonstrate the state of the art performances.
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2024 hgpu.org

All rights belong to the respective authors

Contact us: