Adaptive Task Size Control on High Level Programming for GPU/CPU Work Sharing
University of Tsukuba
The 2013 International Symposium on Advances of Distributed and Parallel Computing (ADPC 2013), hal-00920915, 2013
On the work sharing among GPUs and CPU cores on GPU equipped clusters, it is a critical issue to keep load balance among these heterogeneous computing resources. We have been developing a runtime system for this problem on PGAS language named XcalableMP-dev/StarPU [1]. Through the development, we found the necessity of adaptive load balancing for GPU/CPU work sharing to achieve the best performance for various application codes. In this paper, we enhance our language system XcalableMP-dev/StarPU to add a new feature which can control the task size to be assigned to these heterogeneous resources dynamically during application execution. As a result of performance evaluation on several benchmarks, we confirmed the proposed feature correctly works and the performance with heterogeneous work sharing provides up to about 40% higher performance than GPU-only utilization even for relatively small size of problems.
December 25, 2013 by hgpu