12519

Efficient On-the-fly Category Retrieval using ConvNets and GPUs

Ken Chatfield, Karen Simonyan, Andrew Zisserman
Visual Geometry Group, Department of Engineering Science, University of Oxford
arXiv:1407.4764 [cs.CV], (17 Jul 2014)
BibTeX

Download Download (PDF)   View View   Source Source   

1491

views

We investigate the gains in precision and speed, that can be obtained by using Convolutional Networks (ConvNets) for on-the-fly retrieval – where classifiers are learnt at run time for a textual query from downloaded images, and used to rank large image or video datasets.

We make three contributions: (i) we present an evaluation of state-of-the-art image representations for object category retrieval over standard benchmark datasets containing 1M+ images; (ii) we show that ConvNets can be used to obtain features which are incredibly performant, and yet much lower dimensional than previous state-of-the-art image representations, and that their dimensionality can be reduced further without loss in performance by compression using product quantization or binarization. Consequently, features with the state-of-the-art performance on large-scale datasets of millions of images can fit in the memory of even a commodity GPU card; (iii) we show that an SVM classifier can be learnt within a ConvNet framework on a GPU in parallel with downloading the new training images, allowing for a continuous refinement of the model as more images become available, and simultaneous training and ranking. The outcome is an on-the-fly system that significantly outperforms its predecessors in terms of: precision of retrieval, memory requirements, and speed facilitating accurate on-the-fly learning and ranking in under a second on a single GPU.

No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2025 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hpgu.org