16723

Efficient Communications in Training Large Scale Neural Networks

Linnan Wang, Wei Wu, George Bosilca, Richard Vuduc, Zenglin Xu
School of Computer Science, Georgia Institute of Technology
arXiv:1611.04255 [cs.DC], (14 Nov 2016)
BibTeX

Download Download (PDF)   View View   Source Source   

1596

views

We consider the problem of how to reduce the cost of communication that is required for the parallel training of a neural network. The state-of-the-art method, Bulk Synchronous Parallel Stochastic Gradient Descent (BSP-SGD), requires many collective communication operations, like broadcasts of parameters or reductions for sub-gradient aggregations, which for large messages quickly dominates overall execution time and limits parallel scalability. To address this problem, we develop a new technique for collective operations, referred to as Linear Pipelining (LP). It is tuned to the message sizes that arise in BSP-SGD, and works effectively on multi-GPU systems. Theoretically, the cost of LP is invariant to P, where P is the number of GPUs, while the cost of more conventional Minimum Spanning Tree (MST) scales like $O(log P)$. LP also demonstrate up to 2x faster bandwidth than Bidirectional Exchange (BE) techniques that are widely adopted by current MPI implementations. We apply these collectives to BSP-SGD, showing that the proposed implementations reduce communication bottlenecks in practice while preserving the attractive convergence properties of BSP-SGD.
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2025 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hpgu.org