17860

Study of Bandwidth Partitioning for Co-executing GPU Kernels

Erik Melander
Department of Information Technology, Upsala University
Upsala University, 2017

@misc{melander2017study,

   title={Study of Bandwidth Partitioning for Co-executing GPU Kernels},

   author={Melander, Erik},

   year={2017}

}

Download Download (PDF)   View View   Source Source   

456

views

Co-executing GPU kernels on a partitioned GPU has been shown to improve utilization efficiency of poorly scaling tasks. While kernels can be executed in parallel, data transfers to the GPU are serial which can negatively impact parallelism and predictability of the kernels.In this work we implement a fairness-based approach to memory transfers by chunking data sets and transferring them interleaved and evaluate the overhead of this approach. Then we develop a model to predict when kernels will start using this implementation. We found that chunked transfers in a single CUDA stream have only a small overhead compared to serial transfers, while event synchronized transfers in several streams have larger overhead particularly for chunk sizes less than 500 KB.The prediction models accurately estimate kernel starting times and return transfer times with less than 2.7% relative error.
No votes yet.
Please wait...

* * *

* * *

Featured events

2018
November
27-30
Hida Takayama, Japan

The Third International Workshop on GPU Computing and AI (GCA), 2018

2018
September
19-21
Nagoya University, Japan

The 5th International Conference on Power and Energy Systems Engineering (CPESE), 2018

2018
September
22-24
MediaCityUK, Salford Quays, Greater Manchester, England

The 10th International Conference on Information Management and Engineering (ICIME), 2018

2018
August
21-23
No. 1037, Luoyu Road, Hongshan District, Wuhan, China

The 4th International Conference on Control Science and Systems Engineering (ICCSSE), 2018

2018
October
29-31
Nanyang Executive Centre in Nanyang Technological University, Singapore

The 2018 International Conference on Cloud Computing and Internet of Things (CCIOT’18), 2018

HGPU group © 2010-2018 hgpu.org

All rights belong to the respective authors

Contact us: