Serverless Computing Strategies on Cloud Platforms

Diana María Naranjo Delgado
Universitat Politècnica de València
Universitat Politècnica de València, 2021


   title={Serverless Computing Strategies on Cloud Platforms},

   author={Naranjo Delgado, Diana Mar{‘i}a},


   school={Universitat Polit{`e}cnica de Val{`e}ncia}


Download Download (PDF)   View View   Source Source   



With the development of Cloud Computing, the delivery of virtualized resources over the Internet has greatly grown in recent years. Functions as a Service (FaaS), one of the newest service models within Cloud Computing, allows the development and implementation of event-based applications that cover managed services in public and on-premises Clouds. Public Cloud Computing providers adopt the FaaS model within their catalog to provide event-driven highly-scalable computing for applications. On the one hand, developers specialized in this technology focus on creating open-source serverless frameworks to avoid the lock-in with public Cloud providers. Despite the development achieved by serverless computing, there are currently fields related to data processing and execution performance optimization where the full potential has not been explored. In this doctoral thesis three serverless computing strategies are defined that allow to demonstrate the benefits of this technology for data processing. The implemented strategies allow the analysis of data with the integration of accelerated devices for the efficient execution of scientific applications on public and on-premises Cloud platforms. Firstly, the CloudTrail-Tracker platform was developed to extract and process learning analytics in the Cloud. CloudTrail-Tracker is an event-driven open-source platform for serverless data processing that can automatically scale up and down, featuring the ability to scale to zero for minimizing the operational costs. Next, the integration of GPUs in an event-driven on-premises serverless platform for scalable data processing is discussed. The platform supports the execution of applications as severless functions in response to the loading of a file in a file storage system, which allows the parallel execution of applications according to available resources. This processing is managed by an elastic Kubernetes cluster that automatically grows and shrinks according to the processing needs. Certain approaches based on GPU virtualization technologies such as rCUDA and NVIDIA-Docker are evaluated to speed up the execution time of the functions. Finally, another solution based on the serverless model is implemented to run the inference phase of previously trained machine learning models on the Amazon Web Services platform and in a private platform with the OSCAR framework. The system grows elastically according to demand and is scaled to zero to minimize costs. On the other hand, the front-end provides the user with a simplified experience in obtaining the prediction of machine learning models. To demonstrate the functionalities and advantages of the solutions proposed during this thesis, several case studies are collected covering different fields of knowledge such as learning analytics and Artificial Intelligence. This shows the wide range of applications where serverless computing can bring great benefits. The results obtained endorse the use of the serverless model in simplifying the design of architectures for the intensive data processing in complex applications.
Rating: 3.0/5. From 1 vote.
Please wait...

* * *

* * *

* * *

HGPU group © 2010-2022 hgpu.org

All rights belong to the respective authors

Contact us: