2729

Model-driven autotuning of sparse matrix-vector multiply on GPUs

Jee W. Choi, Amik Singh, Richard W. Vuduc
Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, Georgia, USA
Proceedings of the 15th ACM SIGPLAN symposium on Principles and practice of parallel programming, PPoPP ’10

@conference{choi2010model,

   title={Model-driven autotuning of sparse matrix-vector multiply on GPUs},

   author={Choi, J.W. and Singh, A. and Vuduc, R.W.},

   booktitle={Proceedings of the 15th ACM SIGPLAN symposium on Principles and practice of parallel computing},

   pages={115–126},

   year={2010},

   organization={ACM}

}

Download Download (PDF)   View View   Source Source   

803

views

We present a performance model-driven framework for automated performance tuning (autotuning) of sparse matrix-vector multiply (SpMV) on systems accelerated by graphics processing units (GPU). Our study consists of two parts. First, we describe several carefully hand-tuned SpMV implementations for GPUs, identifying key GPU-specific performance limitations, enhancements, and tuning opportunities. These implementations, which include variants on classical blocked compressed sparse row (BCSR) and blocked ELLPACK (BELLPACK) storage formats, match or exceed state-of-the-art implementations. For instance, our best BELLPACK implementation achieves up to 29.0 Gflop/s in single-precision and 15.7 Gflop/s in double-precision on the NVIDIA T10P multiprocessor (C1060), enhancing prior state-of-the-art unblocked implementations (Bell and Garland, 2009) by up to 1.8? and 1.5? for single-and double-precision respectively. However, achieving this level of performance requires input matrix-dependent parameter tuning. Thus, in the second part of this study, we develop a performance model that can guide tuning. Like prior autotuning models for CPUs (e.g., Im, Yelick, and Vuduc, 2004), this model requires offline measurements and run-time estimation, but more directly models the structure of multithreaded vector processors like GPUs. We show that our model can identify the implementations that achieve within 15% of those found through exhaustive search.
No votes yet.
Please wait...

* * *

* * *

Featured events

2018
November
27-30
Hida Takayama, Japan

The Third International Workshop on GPU Computing and AI (GCA), 2018

2018
September
19-21
Nagoya University, Japan

The 5th International Conference on Power and Energy Systems Engineering (CPESE), 2018

2018
September
22-24
MediaCityUK, Salford Quays, Greater Manchester, England

The 10th International Conference on Information Management and Engineering (ICIME), 2018

2018
August
21-23
No. 1037, Luoyu Road, Hongshan District, Wuhan, China

The 4th International Conference on Control Science and Systems Engineering (ICCSSE), 2018

2018
October
29-31
Nanyang Executive Centre in Nanyang Technological University, Singapore

The 2018 International Conference on Cloud Computing and Internet of Things (CCIOT’18), 2018

HGPU group © 2010-2018 hgpu.org

All rights belong to the respective authors

Contact us: