Fast Knowledge Graph Completion using Graphics Processing Units
Intelligence Information Research Division, ETRI, Daejeon, South Korea
arXiv:2307.12059 [cs.AI], (22 Jul 2023)
@misc{lee2023fast,
title={Fast Knowledge Graph Completion using Graphics Processing Units},
author={Chun-Hee Lee and Dong-oh Kang and Hwa Jeon Song},
year={2023},
eprint={2307.12059},
archivePrefix={arXiv},
primaryClass={cs.AI}
}
Knowledge graphs can be used in many areas related to data semantics such as question-answering systems, knowledge based systems. However, the currently constructed knowledge graphs need to be complemented for better knowledge in terms of relations. It is called knowledge graph completion. To add new relations to the existing knowledge graph by using knowledge graph embedding models, we have to evaluate NxNxR vector operations, where N is the number of entities and R is the number of relation types. It is very costly. In this paper, we provide an efficient knowledge graph completion framework on GPUs to get new relations using knowledge graph embedding vectors. In the proposed framework, we first define "transformable to a metric space" and then provide a method to transform the knowledge graph completion problem into the similarity join problem for a model which is "transformable to a metric space". After that, to efficiently process the similarity join problem, we derive formulas using the properties of a metric space. Based on the formulas, we develop a fast knowledge graph completion algorithm. Finally, we experimentally show that our framework can efficiently process the knowledge graph completion problem.
July 30, 2023 by hgpu