4066

A GPU-based maximal frequent itemsets mining algorithm over stream

Haifeng Li
School of Information, Central University of Finance and Economics, Beijing, China, 100081
International Conference On Computer and Communication Technologies in Agriculture Engineering (CCTAE), 2010

@inproceedings{li2010gpu,

   title={A GPU-based maximal frequent itemsets mining algorithm over stream},

   author={Li, H.},

   booktitle={Computer and Communication Technologies in Agriculture Engineering (CCTAE), 2010 International Conference On},

   volume={1},

   pages={289–292},

   organization={IEEE},

   year={2010}

}

Download Download (PDF)   View View   Source Source   

1711

views

Maximal frequent itemsets are one of several condensed representations of frequent itemsets, which store most of the information contained in frequent itemsets using less space, thus being more suitable for stream mining. This paper considers a problem that to the best of our knowledge has not been addressed, namely, how to use GPU to mine maximal frequent itemsets in an incremental fashion. Our method employs a single-instruction-multiple-data architecture to accelerate the mining speed with using a bitmap data representation of frequent itemsets; moreover, we use an inverse tree structure to prune efficiently. Our experimental results show that our algorithm achieves a better performance in running time.
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2024 hgpu.org

All rights belong to the respective authors

Contact us: