8624

Fully Parallel Particle Learning for GPGPUs and Other Parallel Devices

Kenichiro McAlinn, Hiroaki Katsura, Teruo Nakatsuma
Graduate School of Economics, Keio University, 2-15-45 Mita, Minato-ku, Tokyo, Japan
arXiv:1212.1639 [stat.CO] (7 Dec 2012)

@article{2012arXiv1212.1639M,

   author={McAlinn}, K. and {Katsura}, H. and {Nakatsuma}, T.},

   title={"{Fully Parallel Particle Learning for GPGPUs and Other Parallel Devices}"},

   journal={ArXiv e-prints},

   archivePrefix={"arXiv"},

   eprint={1212.1639},

   primaryClass={"stat.CO"},

   keywords={Statistics – Computation},

   year={2012},

   month={dec},

   adsurl={http://adsabs.harvard.edu/abs/2012arXiv1212.1639M},

   adsnote={Provided by the SAO/NASA Astrophysics Data System}

}

Download Download (PDF)   View View   Source Source   

965

views

We developed a novel parallel algorithm for particle filtering (and learning) which is specifically designed for GPUs (graphics processing units) or similar parallel computing devices. In our new algorithm, a full cycle of particle filtering (computing the value of the likelihood for each particle, constructing the cumulative distribution function (CDF) for resampling, resampling the particles with the CDF, and propagating new particles for the next cycle) can be executed in a massively parallel manner. One of the advantages of our algorithm is that every single numerical computation or memory access related to the particle filtering is executed solely inside the GPU, and no data transfer between the GPU’s device memory and the CPU’s host memory occurs unless it is under the absolute necessity of moving generated particles into the host memory for further data processing, so that it can circumvent the limited memory bandwidth between the GPU and the CPU. To demonstrate the advantage of our parallel algorithm, we conducted a Monte Carlo experiment in which we applied the parallel algorithm as well as conventional sequential algorithms for estimation of a simple state space model via particle learning, and compared them in terms of execution time. The results showed that the parallel algorithm was far superior to the sequential algorithm.
No votes yet.
Please wait...

* * *

* * *

Featured events

2018
November
27-30
Hida Takayama, Japan

The Third International Workshop on GPU Computing and AI (GCA), 2018

2018
September
19-21
Nagoya University, Japan

The 5th International Conference on Power and Energy Systems Engineering (CPESE), 2018

2018
September
22-24
MediaCityUK, Salford Quays, Greater Manchester, England

The 10th International Conference on Information Management and Engineering (ICIME), 2018

2018
August
21-23
No. 1037, Luoyu Road, Hongshan District, Wuhan, China

The 4th International Conference on Control Science and Systems Engineering (ICCSSE), 2018

2018
October
29-31
Nanyang Executive Centre in Nanyang Technological University, Singapore

The 2018 International Conference on Cloud Computing and Internet of Things (CCIOT’18), 2018

HGPU group © 2010-2018 hgpu.org

All rights belong to the respective authors

Contact us: