Scaling High Performance Domain-Specific Language Implementation with Delite

Hassan Chafi
Stanford University
Stanford University, 2012



   author={Chafi, H.},




Download Download (PDF)   View View   Source Source   



This thesis covers how to easily implement performance oriented embedded domainspecific languages. Exploiting heterogeneous parallel hardware currently requires mapping application code to multiple disparate programming models. Unfortunately, general-purpose programming models available today can yield high performance but are too low-level to be accessible to the average programmer. We propose leveraging domain-specific languages (DSLs) to map high-level application code to heterogeneous devices. To demonstrate the potential of this approach we present OptiML, a DSL for machine learning. OptiML programs are implicitly parallel and can achieve high performance on heterogeneous hardware with no modification required to the source code. For such a DSL-based approach to be tractable at large scales, better tools are required for DSL authors to simplify language creation and parallelization. To address this concern, we introduce Delite, a system designed specifically for DSLs that is both a framework for creating an implicitly parallel DSL as well as a dynamic runtime providing automated targeting to heterogeneous parallel hardware. We show that OptiML running on Delite achieves single-threaded, parallel, and GPU performance superior to explicitly parallelized MATLAB code in nearly all cases. Computing systems are becoming increasingly parallel and heterogeneous, and therefore new applications must be capable of exploiting parallelism in order to continue achieving high performance. However, targeting these emerging devices often requires using multiple disparate programming models and making decisions that can limit forward scalability. In previous work we proposed the use of domain-specific languages (DSLs) to provide high-level abstractions that enable transformations to high ivperformance parallel code without degrading programmer productivity. In this paper we present a new end-to-end system for building, compiling, and executing DSL applications on parallel heterogeneous hardware, the Delite Compiler Framework and Runtime. The framework lifts embedded DSL applications to an intermediate representation (IR), performs generic, parallel, and domain-specific optimizations, and generates an execution graph that targets multiple heterogeneous hardware devices. Finally we present results comparing the performance of several machine learning applications written in OptiML, a DSL for machine learning that utilizes Delite, to C++ and MATLAB implementations. We find that the implicitly parallel OptiML applications achieve single-threaded performance comparable to C++ and outperform explicitly parallel MATLAB in nearly all cases.
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2023 hgpu.org

All rights belong to the respective authors

Contact us: