9156

GPU-Accelerated Interactive Visualization and Planning of Neurosurgical Interventions

Mario Rincon-Nigro, Nikhil V. Navkar, Nikolaos V. Tsekos, Zhigang Deng
Computer Graphics and Interactive Media Lab and the Department of Computer Science, University of Houston, Houston
IEEE Computer Graphics and Application (CG&A), 2013
BibTeX

Download Download (PDF)   View View   Source Source   

1971

views

Advances in computational methods and hardware platforms provide efficient processing of medical imaging data sets for surgical planning. In the case of neurosurgical interventions that are performed via a straight access path, planning entails selecting a pathway, from the scalp surface to the targeted area, that is of minimal risk to the patient. We propose a GPU-accelerated approach to enable quantitative estimation of the risk associated with a particular access path at interactive rates. It heavily exploits spatially accelerated data structures and efficient implementation of algorithms on GPUs. We evaluate the computational efficiency and scalability of the proposed approach through extensive performance comparisons, and show that interactive rates can be achieved even for high-resolution meshes. Through a user study, and feedback obtained from domain experts, we identify some of the potential benefits that our high-speed approach offers for pre-operative planning and intra-operative replanning of straight access neurosurgical interventions.
No votes yet.
Please wait...

You must be logged in to post a comment.

Recent source codes

* * *

* * *

HGPU group © 2010-2025 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hpgu.org