hgpu.org » Tesla T40
Xiaojue Zhu, Everett Phillips, Vamsi Spandan, John Donners, Gregory Ruetsch, Josh Romero, Rodolfo Ostilla-Monico, Yantao Yang, Detlef Lohse, Roberto Verzicco, Massimiliano Fatica, Richard J.A.M. Stevens
Tags: cfd, CUDA, Fluid dynamics, Fortran, GPU cluster, MPI, Navier-Stokes equations, NSEs, nVidia, Package, Tesla K20, Tesla P100, Tesla T40
May 6, 2017 by hgpu
Recent source codes
* * *
Most viewed papers (last 30 days)
- Omniwise: Predicting GPU Kernels Performance with LLMs
- P4OMP: Retrieval-Augmented Prompting for OpenMP Parallelism in Serial Code
- Engineering Supercomputing Platforms for Biomolecular Applications
- CUDA-LLM: LLMs Can Write Efficient CUDA Kernels
- GCStack+GCScaler: Fast and Accurate GPU Performance Analyses Using Fine-Grained Stall Cycle Accounting and Interval Analysis
- A First Look at Bugs in LLM Inference Engines
- ParEval-Repo: A Benchmark Suite for Evaluating LLMs with Repository-level HPC Translation Tasks
- Efficient GPU Implementation of Multi-Precision Integer Division
- Accelerated discovery and design of Fe-Co-Zr magnets with tunable magnetic anisotropy through machine learning and parallel computing
- chemtrain-deploy: A parallel and scalable framework for machine learning potentials in million-atom MD simulations
* * *