Computer Tomography and Ultrasonography Image Registration Based on the Cooperation of GPU and CPU

Ying-Chih Lin, Chien-Liang Huang, Chin-Sheng Chen, Wen-Chung Chang, Yu-Jen Chen, Chia-Yuan Liu
Graduate Institute of Automation Technology, National Taipei University of Technology
Journal of Signal and Information Processing, 4, 80-85, 2013
@article{ying2013computer,

   title={Computer Tomography and Ultrasonography Image Registration Based on the Cooperation of GPU and CPU},

   author={Ying-Chih, Lin and Chien-Liang, Huang and Chin-Sheng, Chen and Wen-Chung, Chang and Yu-Jen, Chen and Chia-Yuan, Liu},

   journal={Journal of Signal and Information Processing},

   volume={4},

   pages={80},

   year={2013},

   publisher={Scientific Research Publishing}

}

Download Download (PDF)   View View   Source Source   
Image registration is wildly used in the biomedical image, but there are too many textures and noises in the biomedical image to get a precise image registration. In order to get the excellent registration performance, it needs more complex image processing, and it will spend expensive computation cost. For the real time issue, this paper proposes edge gradient direction image registration applied to Computer Tomography (CT) image and Ultrasonography (US) image based on the cooperation of Graphic Processor Unit (GPU) and Central Processor Unit (CPU). GPU can significantly reduce the computation time. First, the CT image slice is extracted from the CT volume by the region growing and the interpolation algorithm. Secondly, the image pre-processing is employed to reduce the image noises and enhance the image features. There are two kinds of the image pre-processing algorithms invoked in this paper: 1) median filtering and 2) anisotropic diffusion. Last but not least, the image edge gradient information is obtained by Canny operator, and the similarity measurement based on gradient direction is employed to evaluate the similarity between the CT and the US images. The experimental results show that the proposed architecture can distinctively improve the efficiency and are more suitably applied to the real world.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

You must be logged in to post a comment.

* * *

* * *

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 11.4
  • SDK: AMD APP SDK 2.8
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 5.0.35, AMD APP SDK 2.8

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hgpu.org