3D Registration Based on Normalized Mutual Information: Performance of CPU vs. GPU Implementation

Florian Jung, Stefan Wesarg
Interactive Graphics Systems Group (GRIS), TU Darmstadt, Germany
Deserno, T.M.: Bildverarbeitung fur die Medizin 2010: Algorithmen – Systeme – Anwendungen; Proceedings des Workshops vom 14. bis 16. Marz 2010 in Aachen. Berlin: Springer, 2010. (Informatik aktuell), pp. 325-329


   title={3D Registration Based on Normalized Mutual Information: Performance of CPU vs. GPU Implementation},

   author={Jung, F. and Wesarg, S.},

   journal={Bildverarbeitung f{\”u}r die Medizin], Deserno, T. and Hoffmann, J., eds., Informatik aktuell, 5, Springer},



Download Download (PDF)   View View   Source Source   



Medical image registration is time-consuming but can be sped up employing parallel processing on the GPU. Normalized mutual information (NMI) is a well performing similarity measure for performing multi-modal registration. We present CUDA based solutions for computing NMI on the GPU and compare the results obtained by rigidly registering multi-modal data sets with a CPU based implementation. Our tests with RIRE data sets show a speed-up of factor 5 to 7 for our best GPU implementation.
VN:F [1.9.22_1171]
Rating: 0.0/5 (0 votes cast)

Recent source codes

* * *

* * *

TwitterAPIExchange Object
    [oauth_access_token:TwitterAPIExchange:private] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
    [oauth_access_token_secret:TwitterAPIExchange:private] => o29ji3VLVmB6jASMqY8G7QZDCrdFmoTvCDNNUlb7s
    [consumer_key:TwitterAPIExchange:private] => TdQb63pho0ak9VevwMWpEgXAE
    [consumer_secret:TwitterAPIExchange:private] => Uq4rWz7nUnH1y6ab6uQ9xMk0KLcDrmckneEMdlq6G5E0jlQCFx
    [postfields:TwitterAPIExchange:private] => 
    [getfield:TwitterAPIExchange:private] => ?cursor=-1&screen_name=hgpu&skip_status=true&include_user_entities=false
    [oauth:protected] => Array
            [oauth_consumer_key] => TdQb63pho0ak9VevwMWpEgXAE
            [oauth_nonce] => 1487819394
            [oauth_signature_method] => HMAC-SHA1
            [oauth_token] => 301967669-yDz6MrfyJFFsH1DVvrw5Xb9phx2d0DSOFuLehBGh
            [oauth_timestamp] => 1487819394
            [oauth_version] => 1.0
            [cursor] => -1
            [screen_name] => hgpu
            [skip_status] => true
            [include_user_entities] => false
            [oauth_signature] => UQi0b93AVsav2ngOIWRqn8ppne8=

    [url] => https://api.twitter.com/1.1/users/show.json
Follow us on Facebook
Follow us on Twitter

HGPU group

2173 peoples are following HGPU @twitter

HGPU group © 2010-2017 hgpu.org

All rights belong to the respective authors

Contact us: