Graphics Processing Units (GPUs), originally developed for computer games, now provide computational power for scientific applications. A study on the comparison of computational speed-up and efficiency of a GPU with a CPU for the Finite Pointset Method (FPM), which is a numerical tool in Computational Fluid Dynamics (CFD) is presented. As FPM is based on […]

January 19, 2014 by hgpu

We investigated the possible way for treatment of electrostatic interactions by solving numerically Poisson’s equation using Conjugate Gradient method and Stabilized BiConjugate Gradient method. The aim of the research was to test the execution time of prototype programs running on BLueGene/P and CPU/GPU system. The results show that the tested methods are applicable for electrostatics […]

December 11, 2013 by hgpu

In this paper a new scalable hydrodynamic code GPUPEGAS (GPU-accelerated PErformance Gas Astrophysic Simulation) for simulation of interacting galaxies is proposed. The code is based on combination of Godunov method as well as on the original implementation of FlIC method, specially adapted for GPU-implementation. Fast Fourier Transform is used for Poisson equation solution in GPUPEGAS. […]

November 6, 2013 by hgpu

Graphics Processing Units (GPUs) have emerged as highly capable computational accelerators for scientific and engineering applications. Many reports claim orders of magnitude of speedup compared to traditional Central Processing Units (CPUs), and the interest for GPU computation is high in the computational world. In this thesis, the capability of using GPUs to accelerate the full […]

October 19, 2013 by hgpu

This thesis is a comprehensive account of my experiences implementing the Lattice Boltzmann Method (LBM) for the purpose of simulating multiphase flows relevant to Air Conditioning and Refrigeration Center (ACRC) applications. Other methodologies have been used to simulate multiphase flow including finite volume based Navier-Stokes solvers. These methods have found reasonable success in simulating multiphase […]

August 26, 2013 by hgpu

Solving a banded linear system efficiently is important to many scientific and engineering applications. Current solvers achieve good scalability only on the linear systems that can be partitioned into independent subsystems. In this paper, we present a GPU based, scalable Bi-Conjugate Gradient Stabilized solver that can be used to solve a wide range of banded […]

August 16, 2013 by hgpu

Guermond and Minev proposed a directional splitting algorithm to solve the incompressible Stokes equations. Their algorithm applies the alternating direction implicit method to the viscosity term. The pressure update uses a direction splitting method in order to enforce the incompressibility constraint, as opposed to commonly used projection methods that require the solution of a Poisson […]

August 9, 2013 by hgpu

Two block cyclic reduction linear system solvers are considered and implemented using the OpenCL framework. The topics of interest include a simplified scalar cyclic reduction tridiagonal system solver and the impact of increasing the radix-number of the algorithm. Both implementations are tested for the Poisson problem in two and three dimensions, using a Nvidia GTX […]

January 3, 2013 by hgpu

A 3-dimensional GPU Poisson solver is developed for all possible combinations of free and periodic boundary conditions along the three directions. It is benchmarked for various grid sizes and different BCs and a significant performance gain is observed for problems including one or more free BCs. The GPU Poisson solver is also benchmarked against two […]

November 26, 2012 by hgpu

The paper presented theVortexin Cell (VIC) method for solving the fluid motion equations in3D and its implementation for parallelcomputationin multicore architecture of the Graphics Processing Unit (GPU). One of the most important components of the VIC method algorithm is the solution of the Poisson equation. Multigrid and full multigrid methods were chosen for its solution […]

October 4, 2012 by hgpu

The geometric multigrid method (GMG) is one of the most efficient solving techniques for discrete algebraic systems arising from many types of partial differential equations. GMG utilizes a hierarchy of grids or discretizations and reduces the error at a number of frequencies simultaneously. Graphics processing units (GPUs) have recently burst onto the scientific computing scene […]

August 22, 2012 by hgpu

This paper presents GPU-based solutions to the Poisson equation with homogeneous Dirichlet boundary conditions in two spatial dimensions. This problem has well-understood behavior, but similar computation to many more complex real-world problems. We analyze the GPU performance using three types of memory access in the CUDA memory model (direct access to global memory, texture access, […]

April 13, 2012 by hgpu