13919

Fine-Grained Synchronizations and Dataflow Programming on GPUs

Ang Li, Gert-Jan van den Braak, Henk Corporaa, Akash Kumar
Eindhoven University of Technology, Eindhoven, Netherlands
International Conference on Supercomputing (ICS), 2015
BibTeX

Download Download (PDF)   View View   Source Source   

2710

views

The last decade has witnessed the blooming emergence of many-core platforms, especially the graphic processing units (GPUs). With the exponential growth of cores in GPUs, utilizing them efficiently becomes a challenge. The data-parallel programming model assumes a single instruction stream for multiple concurrent threads (SIMT); therefore little support is offered to enforce thread ordering and fine-grained synchronizations. This becomes an obstacle when migrating algorithms which exploit fine-grained parallelism, to GPUs, such as the data-flow algorithms. In this paper, we propose a novel approach for fine-grained inter-thread synchronizations on the shared memory of modern GPUs. We demonstrate its performance and compare it with other fine-grained and medium-grained synchronization approaches. Our method achieves 1.5x speedup over the warp-barrier based approach and 4.0x speedup over the atomic spin-lock based approach on average. To further explore the possibility of realizing fine-grained data-flow algorithms on GPUs, we apply the proposed synchronization scheme to Needleman-Wunsch – a 2D wavefront application involving massive cross-loop data dependencies. Our implementation achieves 3.56x speedup over the atomic spin-lock implementation and 1.15x speedup over the conventional data-parallel implementation for a basic sub-grid, which implies that the fine-grained, lock-based programming pattern could be an alternative choice for designing general-purpose GPU applications (GPGPU).
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2025 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hpgu.org