Program Analysis and Machine Learning based Approach to Predict Power Consumption of CUDA Kernel
Department of CS&IS, BITS Pilani K. K. Birla Goa Campus, India
ACM Transactions on Modeling and Performance Evaluation of Computing Systems, 2023
DOI:10.1145/3603533
@article{alavani2023program,
title={Program Analysis and Machine Learning based Approach to Predict Power Consumption of CUDA Kernel},
author={Alavani, Gargi and Desai, Jineet and Saha, Snehanshu and Sarkar, Santonu},
journal={ACM Transactions on Modeling and Performance Evaluation of Computing Systems},
year={2023},
publisher={ACM New York, NY}
}
General Purpose Graphics Processing Unit (GPGPU) has secured a prominent position in the High-Performance Computing (HPC) world due to its performance gain and programmability. Understanding the relationship between GPU power consumption and program features can aid developers in building energy-efficient sustainable applications. In this work, we propose a static analysis based power model built using machine learning techniques. We have investigated six machine learning models across three NVIDIA GPU architectures: Kepler, Maxwell, and Volta with Random Forest, Extra Trees, Gradient Boosting, CatBoost, and XGBoost, reporting favorable results. We observed that the XGBoost technique based prediction model is the most efficient technique with an R-square value of 0.9646 on Volta Architecture. The dataset used for these techniques includes kernels from different benchmarks suits, sizes, nature (e.g., compute-bound, memory-bound), and complexity (e.g., control divergence, memory access patterns). Experimental results suggest that the proposed solution can help developers precisely predict GPU applications power consumption using program analysis across GPU architectures. Developers can use this approach to refactor their code to build energy-efficient GPU applications.
June 11, 2023 by hgpu