29939

GPU Acceleration of SQL Analytics on Compressed Data

Zezhou Huang, Krystian Sakowski, Hans Lehnert, Wei Cui, Carlo Curino, Matteo Interlandi, Marius Dumitru, Rathijit Sen
Microsoft
arXiv:2506.10092 [cs.DB], (11 Jun 2025)
BibTeX

Download Download (PDF)   View View   Source Source   

292

views

GPUs are uniquely suited to accelerate (SQL) analytics workloads thanks to their massive compute parallelism and High Bandwidth Memory (HBM) — when datasets fit in the GPU HBM, performance is unparalleled. Unfortunately, GPU HBMs remain typically small when compared with lower-bandwidth CPU main memory. Besides brute-force scaling across many GPUs, current solutions to accelerate queries on large datasets include leveraging data partitioning and loading smaller data batches in GPU HBM, and hybrid execution with a connected device (e.g., CPUs). Unfortunately, these approaches are exposed to the limitations of lower main memory and host-to-device interconnect bandwidths, introduce additional I/O overheads, or incur higher costs. This is a substantial problem when trying to scale adoption of GPUs on larger datasets. Data compression can alleviate this bottleneck, but to avoid paying for costly decompression/decoding, an ideal solution must include computation primitives to operate directly on data in compressed form.
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2025 hgpu.org

All rights belong to the respective authors

Contact us:

contact@hpgu.org