Parallelism, Patterns, and Performance in Iterative MRI Reconstruction

Mark Murphy
EECS Department, University of California, Berkeley
University of California, Technical Report No. UCB/EECS-2011-134, 2011


   title={Parallelism, Patterns, and Performance in Iterative MRI Reconstruction},

   author={Murphy, M. and Lustig, M. and Keutzer, K.},



Magnetic Resonance Imaging (MRI) is a non-invasive and highly exible medical imaging modality that does not expose patients ionizing radiation. MR Image acquisitions can be designed by varying a large number of contrast-generation parameters, and many clinical diagnostic applications exist. However, imaging speed is a fundamental limitation to many potential applications. Traditionally, MRI data have been collected at Nyquist sampling rates to produce alias-free images. However, many recent scan acceleration techniques produce sub-Nyquist samplings. For example, Parallel Imaging is a well-established acceleration technique that receives the MR signal simultaneously from multiple receive channels. Compressed sensing leverages randomized undersampling and the compressibility (e.g. via Wavelet transforms or Total-Variation) of medical images to allow more aggressive undersampling. Reconstruction of clinically viable images from these highly accelerated acquisitions requires powerful, usually iterative algorithms. Non-Cartesian pulse sequences that perform non-equispaced sampling of k-space further increase computational intensity of reconstruction, as they preclude direct use of the Fast Fourier Transform (FFT). Most iterative algorithms can be understood by considering the MRI reconstruction as an inverse problem, where measurements of un-observable parameters are made via an observation function that models the acquisition process. Traditional direct reconstruction methods attempt to invert this observation function, whereas iterative methods require its repeated computation and computation of its adjoint. As a result, naive sequential implementations of iterative reconstructions produce unfeasibly long runtimes. Their computational intensity is a substantial barrier to their adoption in clinical MRI practice.
No votes yet.
Please wait...

* * *

* * *

Featured events

Hida Takayama, Japan

The Third International Workshop on GPU Computing and AI (GCA), 2018

Nagoya University, Japan

The 5th International Conference on Power and Energy Systems Engineering (CPESE), 2018

MediaCityUK, Salford Quays, Greater Manchester, England

The 10th International Conference on Information Management and Engineering (ICIME), 2018

No. 1037, Luoyu Road, Hongshan District, Wuhan, China

The 4th International Conference on Control Science and Systems Engineering (ICCSSE), 2018

Nanyang Executive Centre in Nanyang Technological University, Singapore

The 2018 International Conference on Cloud Computing and Internet of Things (CCIOT’18), 2018

HGPU group © 2010-2018 hgpu.org

All rights belong to the respective authors

Contact us: