9149

Batched Kronecker product for 2-D matrices and 3-D arrays on NVIDIA GPUs

Chetan Jhurani
Tech-X Corporation, Boulder

@article{tkron,

   title={Batched Kronecker product for 2-D matrices and 3-D arrays on NVIDIA GPUs},

   journal={Submitted},

   url={\url{users.ices.utexas.edu/~chetan/preprints/2013-CJ-kron.pdf}},

   author={{Chetan Jhurani}},

   year={2013}

}

Download Download (PDF)   View View   Source Source   

2060

views

We describe an interface and an implementation for performing Kronecker product actions on NVIDIA GPUs for multiple small 2-D matrices and 3-D arrays processed in parallel as a batch. This method is suited to cases where the Kronecker product component matrices are identical but the operands in a matrix-free application vary in the batch. Any batched GEMM (General Matrix Multiply) implementation, for example ours or the one in cuBLAS, can also be used for performing batched Kronecker products on GPUs. However, the specialized implementation presented here is faster and uses less memory. Partly this is because a simple GEMM based approach would require extra copies to and from main memory. We focus on matrix sizes less than or equal to 16, since these are the typical polynomial degrees in Finite Elements, but the implementation can be easily extended for other sizes. We obtain 143 and 285 GFlop/s for single precision real when processing matrices of size 10 and 16, respectively on NVIDIA Tesla K20c using CUDA 5.0. The corresponding speeds for 3-D array Kronecker products are 126 and 268 GFlop/s, respectively. Double precision is easily supported using the C++ template mechanism.
No votes yet.
Please wait...

* * *

* * *

HGPU group © 2010-2024 hgpu.org

All rights belong to the respective authors

Contact us: