2120
Nathan Schmid, Mathias Botschi, Wilfred F. Van Gunsteren
During the past few years, graphics processing units (GPUs) have become extremely popular in the high performance computing community. In this study, we present an implementation of an acceleration engine for the solvent-solvent interaction evaluation of molecular dynamics simulations. By careful optimization of the algorithm speed-ups up to a factor of 54 (single-precision GPU vs. […]
Ramu Anandakrishnan, Tom R. W. Scogland, Andrew T. Fenley, John C. Gordon, Wu-chun Feng, Alexey V. Onufriev
Tools that compute and visualize biomolecular electrostatic surface potential have been used extensively for studying biomolecular function. However, determining the surface potential for large biomolecules on a typical desktop computer can take days or longer using currently available tools and methods. Two commonly used techniques to speed-up these types of electrostatic computations are approximations based […]
View View   Download Download (PDF)   
P. Eastman, V. S. Pande
We describe an algorithm for computing nonbonded interactions with cutoffs on a graphics processing unit. We have incorporated it into OpenMM, a library for performing molecular simulations on high-performance computer architectures. We benchmark it on a variety of systems including boxes of water molecules, proteins in explicit solvent, a lipid bilayer, and proteins with implicit […]
Mark S. Friedrichs, Peter Eastman, Vishal Vaidyanathan, Mike Houston, Scott Legrand, Adam L. Beberg, Daniel L. Ensign, Christopher M. Bruns, Vijay S. Pande
We describe a complete implementation of all-atom protein molecular dynamics running entirely on a graphics processing unit (GPU), including all standard force field terms, integration, constraints, and implicit solvent. We discuss the design of our algorithms and important optimizations needed to fully take advantage of a GPU. We evaluate its performance, and show that it […]
David Dynerman, Erick Butzlaff, Julie C. Mitchell
It is well-established that a linear correlation exists between accessible surface areas and experimentally measured solvation energies. Combining this knowledge with an analytic formula for calculation of solvent accessible surfaces, we derive a simple model of desolvation energy as a differentiable function of atomic positions. Additionally, we find that this algorithm is particularly well suited […]
View View   Download Download (PDF)   
Tetsu Narumi, Kenji Yasuoka, Makoto Taiji, Siegfried Hofinger
Scientific applications do frequently suffer from limited compute performance. In this article, we investigate the suitability of specialized computer chips to overcome this limitation. An enhanced Poisson Boltzmann program is ported to the graphics processing unit and the application specific integrated circuit MDGRAPE-3 and resulting execution times are compared to the conventional performance obtained on […]

* * *

* * *

Like us on Facebook

HGPU group

184 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1311 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: