2120
Nathan Schmid, Mathias Botschi, Wilfred F. Van Gunsteren
During the past few years, graphics processing units (GPUs) have become extremely popular in the high performance computing community. In this study, we present an implementation of an acceleration engine for the solvent-solvent interaction evaluation of molecular dynamics simulations. By careful optimization of the algorithm speed-ups up to a factor of 54 (single-precision GPU vs. […]
Ramu Anandakrishnan, Tom R. W. Scogland, Andrew T. Fenley, John C. Gordon, Wu-chun Feng, Alexey V. Onufriev
Tools that compute and visualize biomolecular electrostatic surface potential have been used extensively for studying biomolecular function. However, determining the surface potential for large biomolecules on a typical desktop computer can take days or longer using currently available tools and methods. Two commonly used techniques to speed-up these types of electrostatic computations are approximations based […]
View View   Download Download (PDF)   
P. Eastman, V. S. Pande
We describe an algorithm for computing nonbonded interactions with cutoffs on a graphics processing unit. We have incorporated it into OpenMM, a library for performing molecular simulations on high-performance computer architectures. We benchmark it on a variety of systems including boxes of water molecules, proteins in explicit solvent, a lipid bilayer, and proteins with implicit […]
Mark S. Friedrichs, Peter Eastman, Vishal Vaidyanathan, Mike Houston, Scott Legrand, Adam L. Beberg, Daniel L. Ensign, Christopher M. Bruns, Vijay S. Pande
We describe a complete implementation of all-atom protein molecular dynamics running entirely on a graphics processing unit (GPU), including all standard force field terms, integration, constraints, and implicit solvent. We discuss the design of our algorithms and important optimizations needed to fully take advantage of a GPU. We evaluate its performance, and show that it […]
David Dynerman, Erick Butzlaff, Julie C. Mitchell
It is well-established that a linear correlation exists between accessible surface areas and experimentally measured solvation energies. Combining this knowledge with an analytic formula for calculation of solvent accessible surfaces, we derive a simple model of desolvation energy as a differentiable function of atomic positions. Additionally, we find that this algorithm is particularly well suited […]
View View   Download Download (PDF)   
Tetsu Narumi, Kenji Yasuoka, Makoto Taiji, Siegfried Hofinger
Scientific applications do frequently suffer from limited compute performance. In this article, we investigate the suitability of specialized computer chips to overcome this limitation. An enhanced Poisson Boltzmann program is ported to the graphics processing unit and the application specific integrated circuit MDGRAPE-3 and resulting execution times are compared to the conventional performance obtained on […]

* * *

* * *

Follow us on Twitter

HGPU group

1731 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

365 people like HGPU on Facebook

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: