Posts
Aug, 5
A Moving Least Squares Based Approach for Contour Visualization of Multi-Dimensional Data
Analysis of high dimensional data is a common task. Often, small multiples are used to visualize 1 or 2 dimensions at a time, such as in a scatterplot matrix. Associating data points between different views can be difficult though, as the points are not fixed. Other times, dimensional reduction techniques are employed to summarize the […]
Aug, 3
Integrating Profiling into MDE Compilers
Scientific computation requires more and more performance in its algorithms. New massively parallel architectures suit well to these algorithms. They are known for offering high performance and power efficiency. Unfortunately, as parallel programming for these architectures requires a complex distribution of tasks and data, developers find difficult to implement their applications effectively. Although approaches based […]
Aug, 3
Multithreading for Visual Effects
Tackle the Challenges of Parallel Programming in the Visual Effects Industry: In Multithreading for Visual Effects, developers from DreamWorks Animation, Pixar, Side Effects, Intel, and AMD share their successes and failures in the messy real-world application area of production software. They provide practical advice on multithreading techniques and visual effects used in popular visual effects […]
Aug, 3
Accelerating Krylov Subspace Solvers on Graphics Processing Units
Krylov subspace solvers are often the method of choice when solving sparse linear systems iteratively. At the same time, hardware accelerators such as graphics processing units (GPUs) continue to offer significant floating point performance gains for matrix and vector computations through easy-to-use libraries of computational kernels. However, as these libraries are usually composed of a […]
Aug, 3
Extending Lyapack for the Solution of Band Lyapunov Equations on Hybrid CPU-GPU Platforms
The solution of large-scale Lyapunov equations is an important tool for the solution of several engineering problems arising in optimal control and model order reduction. In this work we investigate the case when the coefficient matrix of the equations presents a band structure. Exploiting the structure of this matrix we can achive relevant reductions in […]
Aug, 3
Multi-Threaded Automatic Integration Using OpenMP and CUDA
Problems in many areas give rise to computationally expensive integrals that beg the need of efficient techniques to solve them, e.g., in computational finance for the modeling of cash flows; for the computation of Feynman loop integrals in high energy physics; and in stochastic geometry with applications to computer graphics. We demonstrate feasible numerical approaches […]
Aug, 2
Design of an FPGA-Based FDTD Accelerator Using OpenCL
High-performance computing systems with dedicated hardware on FPGAs can achieve power efficient computations compared with CPUs and GPUs. However, the hardware design on FPGAs needs more time than the software design on CPUs and GPUs. We designed an FDTD hardware accelerator using the OpenCL compiler for FPGAs in this paper. Since it is possible to […]
Aug, 2
An Analysis of OpenACC Programming Model: Image Processing Algorithms as a Case Study
Graphics processing units and similar accelerators have been intensively used in general purpose computations for several years. In the last decade, GPU architecture and organization changed dramatically to support an ever-increasing demand for computing power. Along with changes in hardware, novel programming models have been proposed, such as NVIDIA’s Compute Unified Device Architecture (CUDA) and […]
Aug, 2
Extracting Maximal Exact Matches on GPU
The revolution in high-throughput sequencing technologies accelerated the discovery and extraction of various genomic sequences. However, the massive size of the generated datasets raise several computational problems. For example, aligning the sequences or finding the similar regions in them, which is one of the crucial steps in many bioinformatics pipelines, is a time consuming task. […]
Aug, 2
Integrated Arrival and Departure Schedule Optimization Under Uncertainty
In terminal airspace, integrating arrivals and departures with shared waypoints provides the potential of improving operational efficiency by allowing direct routes when possible. Incorporating stochastic evaluation as a post-analysis process of deterministic optimization, and imposing a safety buffer in deterministic optimization, are two ways to learn and alleviate the impact of uncertainty and to avoid […]
Aug, 2
Accelerated Matrix Element Method with Parallel Computing
The matrix element method utilizes ab initio calculations of probability densities as powerful discriminants for processes of interest in experimental particle physics. The method has already been used successfully at previous and current collider experiments. However, the computational complexity of this method for final states with many particles and degrees of freedom sets it at […]
Aug, 1
CUDA Accelerated Entropy Constrained Vector Quantization and Multiple K-Means
Multi-trial sampled K-means performance and scalability is studied as a stepping stone towards a Graphical Processing Unit implementation of Entropy Constrained Vector Quantization for interactive data compression. Basic parallelization strategies and data layout impacts are explored with K-means. The K-means implementation is extended to Entropy Constrained Vector Quantization, and additional tuning specific to the anticipated […]