Posts
Aug, 31
Bundled depth-map merging for multi-view stereo
Depth-map merging is one typical technique category for multi-view stereo (MVS) reconstruction. To guarantee accuracy, existing algorithms usually require either sub-pixel level stereo matching precision or continuous depth-map estimation. The merging of inaccurate depth-maps remains a challenging problem. This paper introduces a bundle optimization method for robust and accurate depth-map merging. In the method, depth-maps […]
Aug, 31
Partial wave analysis at BES III harnessing the power of GPUs
Partial wave analysis is a core tool in hadron spectroscopy. With the high statistics data available at facilities such as the Beijing Spectrometer III, this procedure becomes computationally very expensive. We have successfully implemented a framework for performing partial wave analysis on graphics processors. We discuss the implementation, the parallel computing frameworks employed and the […]
Aug, 31
Partial Wave Analysis using Graphics Cards
Partial wave analysis is a key technique in hadron spectroscopy. The use of unbinned likelihood fits on large statistics data samples and ever more complex physics models makes this analysis technique computationally very expensive. Parallel computing techniques, in particular the use of graphics processing units, are a powerful means to speed up analyses; in the […]
Aug, 31
Volume exploration using ellipsoidal Gaussian transfer functions
This paper presents an interactive transfer function design tool based on ellipsoidal Gaussian transfer functions (ETFs). Our approach explores volumetric features in the statistical space by modeling the space using the Gaussian mixture model (GMM) with a small number of Gaussians to maximize the likelihood of feature separation. Instant visual feedback is possible by mapping […]
Aug, 31
FPGA based Speeded Up Robust Features
We present an implementation of the Speeded Up Robust Features (SURF) on a Field Programmable Gate Array (FPGA). The SURF algorithm extracts salient points from image and computes descriptors of their surroundings that are invariant to scale, rotation and illumination changes. The interest point detection and feature descriptor extraction algorithm is often used as the […]
Aug, 30
Invited paper: Accelerating neuromorphic vision on FPGAs
Reconfigurable hardware such as FPGAs are being increasingly employed for application acceleration due to their high degree of parallelism, flexibility and power efficiency – factors which are key in the rapidly evolving field of embedded real-time vision. While recent advances in technology have increased the capacity of FPGAs, lack of standard models for developing custom […]
Aug, 30
An FPGA-specific algorithm for direct generation of multi-variate Gaussian random numbers
The multi-variate Gaussian distribution is used to model random processes with distinct pair-wise correlations, such as stock prices that tend to rise and fall together. Multi-variate Gaussian vectors with length n are usually produced by first generating a vector of n independent Gaussian samples, then multiplying with a correlation inducing matrix requiring 0(n2) multiplications. This […]
Aug, 30
Real-Time Plane-Sweeping Stereo with Multiple Sweeping Directions
Recent research has focused on systems for obtaining automatic 3D reconstructions of urban environments from video acquired at street level. These systems record enormous amounts of video; therefore a key component is a stereo matcher which can process this data at speeds comparable to the recording frame rate. Furthermore, urban environments are unique in that […]
Aug, 30
Interactive rendering of large unstructured grids using dynamic level-of-detail
We describe a new dynamic level-of-detail (LOD) technique that allows real-time rendering of large tetrahedral meshes. Unlike approaches that require hierarchies of tetrahedra, our approach uses a subset of the faces that compose the mesh. No connectivity is used for these faces so our technique eliminates the need for topological information and hierarchical data structures. […]
Aug, 28
The Arcane development framework
In this paper, we introduce the Arcane software development framework for 2D and 3D numerical simulation codes. First, we describe the Arcane core, the mesh management and the parallelism strategy. Then, we focus on the concepts introduced to speed up the development of numerical codes: numerical modules, variables, entry points and services. We explain the […]
Aug, 28
Exposing non-standard architectures to embedded software using compile-time virtualisation
The architectures of embedded systems are often application-specific, containing multiple heterogenous cores, non-uniform memory, on-chip networks and custom hardware elements (e.g. DSP cores). Standard programming languages do not use these many of these features natively because they assume a traditional single processor and a single logical address space abstraction that hides these architectural details. This […]
Aug, 28
The impact of diverse memory architectures on multicore consumer software: an industrial perspective from the video games domain
Memory architectures need to adapt in order for performance and scalability to be achieved in software for multicore systems. In this paper, we discuss the impact of techniques for scalable memory architectures, especially the use of multiple, non-cache-coherent memory spaces, on the implementation and performance of consumer software. Primarily, we report extensive real-world experience in […]