1782

Posts

Nov, 25

Interactive Out-of-core Visualisation of Very Large Landscapes on Commodity Graphics Platform

We recently introduced an efficient technique for out-of-core rendering and management of large textured landscapes. The technique, called Batched Dynamic Adaptive Meshes (BDAM), is based on a paired tree structure: a tiled quadtree for texture data and a pair of bintrees of small triangular patches for the geometry. These small patches are TINs that are […]
Nov, 25

Interactive Deformation and Visualization of Level Set Surfaces Using Graphics Hardware

Deformable isosurfaces, implemented with level-set methods, have demonstrated a great potential in visualization for applications such as segmentation, surface processing, and surface reconstruction. Their usefulness has been limited, however, by their high computational cost and and reliance on significant parameter tuning. This paper presents a solution to these challenges by describing graphics processor (GPU) based […]
Nov, 25

Empty Space Skipping and Occlusion Clipping for Texture-based Volume Rendering

We propose methods to accelerate texture-based volume rendering by skipping invisible voxels. We partition the volume into sub-volumes, each containing voxels with similar properties. Sub-volumes composed of only voxels mapped to empty by the transfer function are skipped. To render the adaptively partitioned sub-volumes in visibility order, we reorganize them into an orthogonal BSP tree. […]
Nov, 25

Automatic shader level of detail

Current graphics hardware can render procedurally shaded objects in real-time. However, due to resource and performance limitations, interactive shaders can not yet approach the complexity of shaders written for film production and software rendering, which may stretch to thousands of lines. These constraints limit not only the complexity of a single shader, but also the […]
Nov, 25

Nonlinear optimization framework for image-based modeling on programmable graphics hardware

Graphics hardware is undergoing a change from fixed-function pipelines to more programmable organizations that resemble general purpose stream processors. In this paper, we show that certain general algorithms, not normally associated with computer graphics, can be mapped to such designs. Specifically, we cast nonlinear optimization as a data streaming process that is well matched to […]
Nov, 25

Simulation of cloud dynamics on graphics hardware

This paper presents a physically-based, visually-realistic interactive cloud simulation. Clouds in our system are modeled using partial differential equations describing fluid motion, thermodynamic processes, buoyant forces, and water phase transitions. We also simulate the interaction of clouds with light, including self-shadowing and light scattering.We implement both simulations — dynamic and radiometric — entirely on programmable […]
Nov, 25

A multigrid solver for boundary value problems using programmable graphics hardware

We present a case study in the application of graphics hardware to general-purpose numeric computing. Specifically, we describe a system, built on programmable graphics hardware, able to solve a variety of partial differential equations with complex boundary conditions. Many areas of graphics, simulation, and computational science require efficient techniques for solving such equations. Our system […]
Nov, 25

Photon mapping on programmable graphics hardware

We present a modified photon mapping algorithm capable of running entirely on GPUs. Our implementation uses breadth-first photon tracing to distribute photons using the GPU. The photons are stored in a grid-based photon map that is constructed directly on the graphics hardware using one of two methods: the first method is a multipass technique that […]
Nov, 25

GPU-Based flow simulation with complex boundaries

We present a physically-based flow simulation which supports complex boundary conditions running on the graphics processing unit (GPU). We employ the Lattice Boltzmann Method (LBM), a relatively new discrete-space discrete-time method, for computing the flow field. To handle complex, moving and deformable boundaries, we propose a generic voxelization algorithm of the boundaries using depth peeling, […]
Nov, 25

Acceleration Techniques for GPU-based Volume Rendering

Nowadays, direct volume rendering via 3D textures has positioned itself as an efficient tool for the display and visual analysis of volumetric scalar fields. It is commonly accepted, that for reasonably sized data sets appropriate quality at interactive rates can be achieved by means of this technique. However, despite these benefits one important issue has […]
Nov, 24

Using modern graphics architectures for general-purpose computing: a framework and analysis

Recently, graphics hardware architectures have begun to emphasize versatility, offering rich new ways to programmatically reconfigure the graphics pipeline. In this paper, we explore whether current graphics architectures can be applied to problems where general-purpose vector processors might traditionally be used. We develop a programming framework and apply it to a variety of problems, including […]
Nov, 24

Efficient partitioning of fragment shaders for multipass rendering on programmable graphics hardware

Real-time programmable graphics hardware has resource constraints that prevent complex shaders from rendering in a single pass. One way to virtualize these resources is to partition shading computations into multiple passes, each of which satisfies the given constraints. Many such partitions exist for a shader, but it is important to find one that renders efficiently. […]

Recent source codes

* * *

* * *

HGPU group © 2010-2019 hgpu.org

All rights belong to the respective authors

Contact us: