hgpu.org » AMD Radeon Pro V620
Peter Eastman, Raimondas Galvelis, Raúl P. Peláez, Charlles R. A. Abreu, Stephen E. Farr, Emilio Gallicchio, Anton Gorenko, Michael M. Henry, Frank Hu, Jing Huang, Andreas Krämer, Julien Michel, Joshua A. Mitchell, Vijay S. Pande, João PGLM Rodrigues, Jaime Rodriguez-Guerra, Andrew C. Simmonett, Jason Swails, Ivy Zhang, John D. Chodera, Gianni De Fabritiis, Thomas E. Markland
Tags: AMD Radeon Pro V620, ATI, Chemical Physics, CUDA, HIP, Machine learning, Molecular dynamics, Molecular simulation, nVidia, nVidia A100, nVidia GeForce RTX 4080, OpenCL, Package, Physics
October 15, 2023 by hgpu
Recent source codes
* * *
Most viewed papers (last 30 days)
- Omniwise: Predicting GPU Kernels Performance with LLMs
- P4OMP: Retrieval-Augmented Prompting for OpenMP Parallelism in Serial Code
- Engineering Supercomputing Platforms for Biomolecular Applications
- CUDA-LLM: LLMs Can Write Efficient CUDA Kernels
- GCStack+GCScaler: Fast and Accurate GPU Performance Analyses Using Fine-Grained Stall Cycle Accounting and Interval Analysis
- A First Look at Bugs in LLM Inference Engines
- ParEval-Repo: A Benchmark Suite for Evaluating LLMs with Repository-level HPC Translation Tasks
- Efficient GPU Implementation of Multi-Precision Integer Division
- Accelerated discovery and design of Fe-Co-Zr magnets with tunable magnetic anisotropy through machine learning and parallel computing
- chemtrain-deploy: A parallel and scalable framework for machine learning potentials in million-atom MD simulations
* * *