hgpu.org » nVidia GeForce RTX 4080
Peter Eastman, Raimondas Galvelis, Raúl P. Peláez, Charlles R. A. Abreu, Stephen E. Farr, Emilio Gallicchio, Anton Gorenko, Michael M. Henry, Frank Hu, Jing Huang, Andreas Krämer, Julien Michel, Joshua A. Mitchell, Vijay S. Pande, João PGLM Rodrigues, Jaime Rodriguez-Guerra, Andrew C. Simmonett, Jason Swails, Ivy Zhang, John D. Chodera, Gianni De Fabritiis, Thomas E. Markland
Tags: AMD Radeon Pro V620, ATI, Chemical Physics, CUDA, HIP, Machine learning, Molecular dynamics, Molecular simulation, nVidia, nVidia A100, nVidia GeForce RTX 4080, OpenCL, Package, Physics
October 15, 2023 by hgpu
Recent source codes
* * *
Most viewed papers (last 30 days)
- Data-efficient LLM Fine-tuning for Code Generation
- LithOS: An Operating System for Efficient Machine Learning on GPUs
- Dynamic Memory Management on GPUs with SYCL
- LIFT: LLM-Based Pragma Insertion for HLS via GNN Supervised Fine-Tuning
- MSCCL++: Rethinking GPU Communication Abstractions for Cutting-edge AI Applications
- Efficient deep learning inference on end devices
- DeepCompile: A Compiler-Driven Approach to Optimizing Distributed Deep Learning Training
- InteropUnityCUDA: A Tool for Interoperability Between Unity and CUDA
- Mìmir: A real-time interactive visualization library for CUDA programs
- Efficient Graph Embedding at Scale: Optimizing CPU-GPU-SSD Integration
* * *