hgpu.org » Energy efficiency
Mina Ashoury, Mohammad Loni, Farshad Khunjush, Masoud Daneshtalab
Tags: Computer science, CUDA, Energy efficiency, Linear Algebra, nVidia, nVidia GeForce GTX 1080, nVidia GeForce GTX 1650, Sparse matrix
February 26, 2023 by hgpu
Sparsh Mittal
Tags: Energy efficiency, GPU, nVidia, Performance, Power, Register file, Reliability, Research, survey
March 22, 2016 by sparsh0mittal
Recent source codes
* * *
Most viewed papers (last 30 days)
- Omniwise: Predicting GPU Kernels Performance with LLMs
- P4OMP: Retrieval-Augmented Prompting for OpenMP Parallelism in Serial Code
- Engineering Supercomputing Platforms for Biomolecular Applications
- CUDA-LLM: LLMs Can Write Efficient CUDA Kernels
- GCStack+GCScaler: Fast and Accurate GPU Performance Analyses Using Fine-Grained Stall Cycle Accounting and Interval Analysis
- A First Look at Bugs in LLM Inference Engines
- ParEval-Repo: A Benchmark Suite for Evaluating LLMs with Repository-level HPC Translation Tasks
- Efficient GPU Implementation of Multi-Precision Integer Division
- Accelerated discovery and design of Fe-Co-Zr magnets with tunable magnetic anisotropy through machine learning and parallel computing
- chemtrain-deploy: A parallel and scalable framework for machine learning potentials in million-atom MD simulations
* * *