hgpu.org » Exa.TrkX
Xiangyang Ju, Daniel Murnane, Paolo Calafiura, Nicholas Choma, Sean Conlon, Steve Farrell, Yaoyuan Xu, Maria Spiropulu, Jean-Roch Vlimant, Adam Aurisano, Jeremy Hewes, Giuseppe Cerati, Lindsey Gray, Thomas Klijnsma, Jim Kowalkowski, Markus Atkinson, Mark Neubauer, Gage DeZoort, Savannah Thais, Aditi Chauhan, Alex Schuy, Shih-Chieh Hsu, Alex Ballow, Alina Lazar
Tags: Algorithms, CUDA, Deep learning, Exa.TrkX, HEP, Neural networks, nVidia, Package, Physics, Tesla A100, Tesla V100
March 21, 2021 by hgpu
Recent source codes
* * *
Most viewed papers (last 30 days)
- CUDA-L2: Surpassing cuBLAS Performance for Matrix Multiplication through Reinforcement Learning
- Accurate Models of NVIDIA Tensor Cores
- TritonForge: Profiling-Guided Framework for Automated Triton Kernel Optimization
- PEAK: A Performance Engineering AI-Assistant for GPU Kernels Powered by Natural Language Transformations
- cuPilot: A Strategy-Coordinated Multi-agent Framework for CUDA Kernel Evolution
- Tilus: A Tile-Level GPGPU Programming Language for Low-Precision Computation
- Beyond Code Pairs: Dialogue-Based Data Generation for LLM Code Translation
- Hybrid Learning and Optimization-Based Dynamic Scheduling for DL Workloads on Heterogeneous GPU Clusters
- BoltzGen:Toward Universal Binder Design
- AccelOpt: A Self-Improving LLM Agentic System for AI Accelerator Kernel Optimization
* * *




