Stochastic electrodynamics is a classical theory which assumes that the physical vacuum consists of classical stochastic fields with average energy $frac{1}{2}hbar omega$ in each mode, i.e., the zero-point Planck spectrum. While this classical theory explains many quantum phenomena related to harmonic oscillator problems, hard results on nonlinear systems are still lacking. In this work the […]

February 27, 2015 by hgpu

Graphics Processing Units (GPUs) can speed up the numerical solution of various problems in astrophysics including the dynamical evolution of stellar systems; the performance gain can be more than a factor 100 compared to using a Central Processing Unit only. In this work I describe some strategies to speed up the classical N-body problem using […]

November 20, 2014 by hgpu

Finite-Difference Time-Domain (FDTD) is a popular technique for modeling computational electrodynamics, and is used within many research areas, such as the development of antennas, ultrasound imaging, and seismic wave propagation. Simulating large domains can however be very compute and memory demanding, which has motivated the use of cluster computing, and lately also the use of […]

October 10, 2014 by hgpu

Various guidelines for acceleration of MoM by GPU computing are summarized. Acceleration of direct/iterative solver for MoM by using GPU is realized. Quantitative study of computing time shows the performance of each guideline.

August 26, 2014 by hgpu

High-performance computing systems with dedicated hardware on FPGAs can achieve power efficient computations compared with CPUs and GPUs. However, the hardware design on FPGAs needs more time than the software design on CPUs and GPUs. We designed an FDTD hardware accelerator using the OpenCL compiler for FPGAs in this paper. Since it is possible to […]

August 2, 2014 by hgpu

Electromagnetic calculation plays an important role in both military and civic fields. Some methods and models proposed for calculation of electromagnetic wave propagation in a large range, bring heavy burden in CPU computation, and also require huge amount of memory. Using the GPU to accelerate computation and visualization can reduce the computational burden on the […]

July 24, 2014 by hgpu

The present report deals with the application of the algorithm for computation of electromagnetic field components using FDTD method developed by Kane Yee, to Cartesian meshes using total field formulation. For this purpose, code has been written for electromagnetic scattering computation in C language. For generation of code, some snippets from [1] have been used. […]

July 18, 2014 by hgpu

A finite-difference Micromagnetic solver is presented utilizing the C++ Accelerated Massive Parallelism (C++ AMP). The high speed performance of a single Graphics Processing Unit (GPU) is demonstrated compared to a typical CPU-based solver. The speed-up of GPU to CPU is shown to be greater than 100 for problems with larger sizes. This solver is based […]

July 1, 2014 by hgpu

In this paper, the graphic processor unit (GPU) implementation of the finite-difference time domain (FDTD) algorithm is presented to investigate the electromagnetic (EM) scattering from one dimensional (1-D) Gaussian rough soil surface. The FDTD lattices are truncated by uniaxial perfectly matched layer (UPML), in which the finite-difference equations are carried out for the total computation […]

June 20, 2014 by hgpu

We implement an efficient energy-minimization algorithm for finite-difference micromagnetics that proofs especially usefull for the computation of hysteresis loops. Compared to results obtained by time integration of the Landau-Lifshitz-Gilbert equation, a speedup of up to two orders of magnitude is gained. The method is implemented in a finite-difference code running on CPUs as well as […]

May 14, 2014 by hgpu

Ultra-wideband (UWB) wireless systems have recently gained considerable attention as effective communications platforms with the properties of low power and high data rates. Applications of UWB such as wireless USB put size constraints on the antenna, however, which can be very difficult to meet using typical narrow band antenna designs. The aim of this thesis […]

May 7, 2014 by hgpu

The Physical Optics approximation is a widely used asymptotic method for calculating the scattering from electrically large bodies. It requires significant computational work and little memory, and is thus well suited for application on a Graphics Processing Unit. Here, we investigate the performance of an implementation and demonstrate that while there are some implementational pitfalls, […]

April 22, 2014 by hgpu