13917
Weifeng Liu, Brian Vinter
Sparse matrix-vector multiplication (SpMV) is a central building block for scientific software and graph applications. Recently, heterogeneous processors composed of different types of cores attracted much attention because of their flexible core configuration and high energy efficiency. In this paper, we propose a compressed sparse row (CSR) format based SpMV algorithm utilizing both types of […]
Sencer Nuri Yeralan, Timothy A. Davis, Sanjay Ranka
Sparse matrix factorization involves a mix of regular and irregular computation, which is a particular challenge when trying to obtain high-performance on the highly parallel general-purpose computing cores available on graphics processing units (GPUs). We present a sparse multifrontal QR factorization method that meets this challenge, and is up to eleven times faster than a […]
Weifeng Liu, Brian Vinter
General sparse matrix-matrix multiplication (SpGEMM) is a fundamental building block for numerous applications such as algebraic multigrid method (AMG), breadth first search and shortest path problem. Compared to other sparse BLAS routines, an efficient parallel SpGEMM implementation has to handle extra irregularity from three aspects: (1) the number of nonzero entries in the resulting sparse […]
Rahul Sharma, Michael Bauer, Alex Aiken
Previous efforts to formally verify code written for GPUs have focused solely on kernels written within the traditional data-parallel GPU programming model. No previous work has considered the higher performance, but more complex, warp-specialized kernels based on producer-consumer named barriers available on current hardware. In this work we present the first formal operational semantics for […]
Scott Zimmerman
This whitepaper is intended for Microsoft Windows developers who are considering writing high-performance parallel code in Amazon Web Services (AWS) using the Microsoft C++ Accelerated Massive Parallelism (C++ AMP) library. This paper describes an ASP.NET Model-View-Controller (MVC) web application written in C# that invokes C++ functions running on the graphics processing unit (GPU) for matrix […]
Long Wang, Rainer Spurzem, Sverre Aarseth, Keigo Nitadori, Peter Berczik, M.B.N. Kouwenhoven, Thorsten Naab
Accurate direct N-body simulations help to obtain detailed information about the dynamical evolution of star clusters. They also enable comparisons with analytical models and Fokker-Planck or Monte-Carlo methods. NBODY6 is a well-known direct N-body code for star clusters, and NBODY6++ is the extended version designed for large particle number simulations by supercomputers. We present NBODY6++GPU, […]
Wim Vanderbauwhede
In this report we present a novel approach to model coupling for shared-memory multicore systems hosting OpenCL-compliant accelerators, which we call The Glasgow Model Coupling Framework (GMCF). We discuss the implementation of a prototype of GMCF and its application to coupling the Weather Research and Forecasting Model and an OpenCL-accelerated version of the Large Eddy […]
Anton Wijs
Bisimilarity checking is an important operation to perform explicit-state model checking when the state space of a model under verification has already been generated. It can be applied in various ways: reduction of a state space w.r.t. a particular flavour of bisimilarity, or checking that two given state spaces are bisimilar. Bisimilarity checking is a […]
Sven Warris, Feyruz Yalcin, Katherine J. L. Jackson, Jan Peter Nap
MOTIVATION: To obtain large-scale sequence alignments in a fast and flexible way is an important step in the analyses of next generation sequencing data. Applications based on the Smith-Waterman (SW) algorithm are often either not fast enough, limited to dedicated tasks or not sufficiently accurate due to statistical issues. Current SW implementations that run on […]
Adam Betts, Nathan Chong, Alastair F. Donaldson, Jeroen Ketema, Shaz Qadeer, Paul Thomson, John Wickerson
We present a technique for the formal verification of GPU kernels, addressing two classes of correctness properties: data races and barrier divergence. Our approach is founded on a novel formal operational semantics for GPU kernels termed synchronous, delayed visibility (SDV) semantics, which captures the execution of a GPU kernel by multiple groups of threads. The […]
Gloria Ortega Lopez
This thesis, entitled "High Performance Computing for solving large sparse systems. Optical Diffraction Tomography as a case of study" investigates the computational issues related to the resolution of linear systems of equations which come from the discretization of physical models described by means of Partial Differential Equations (PDEs). These physical models are conceived for the […]
Benjamin Schmid, Jan Huisken
In light-sheet microscopy, overall image content and resolution are improved by acquiring and fusing multiple views of the sample from different directions. State-of-the-art multi-view (MV) deconvolution employs the point spread functions (PSF) of the different views to simultaneously fuse and deconvolve the images in 3D, but processing takes a multiple of the acquisition time and […]
Page 1 of 8212345...102030...Last »

* * *

* * *

Like us on Facebook

HGPU group

238 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1445 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: