1778

Posts

Nov, 25

Nonlinear optimization framework for image-based modeling on programmable graphics hardware

Graphics hardware is undergoing a change from fixed-function pipelines to more programmable organizations that resemble general purpose stream processors. In this paper, we show that certain general algorithms, not normally associated with computer graphics, can be mapped to such designs. Specifically, we cast nonlinear optimization as a data streaming process that is well matched to […]
Nov, 25

Simulation of cloud dynamics on graphics hardware

This paper presents a physically-based, visually-realistic interactive cloud simulation. Clouds in our system are modeled using partial differential equations describing fluid motion, thermodynamic processes, buoyant forces, and water phase transitions. We also simulate the interaction of clouds with light, including self-shadowing and light scattering.We implement both simulations — dynamic and radiometric — entirely on programmable […]
Nov, 25

A multigrid solver for boundary value problems using programmable graphics hardware

We present a case study in the application of graphics hardware to general-purpose numeric computing. Specifically, we describe a system, built on programmable graphics hardware, able to solve a variety of partial differential equations with complex boundary conditions. Many areas of graphics, simulation, and computational science require efficient techniques for solving such equations. Our system […]
Nov, 25

Photon mapping on programmable graphics hardware

We present a modified photon mapping algorithm capable of running entirely on GPUs. Our implementation uses breadth-first photon tracing to distribute photons using the GPU. The photons are stored in a grid-based photon map that is constructed directly on the graphics hardware using one of two methods: the first method is a multipass technique that […]
Nov, 25

GPU-Based flow simulation with complex boundaries

We present a physically-based flow simulation which supports complex boundary conditions running on the graphics processing unit (GPU). We employ the Lattice Boltzmann Method (LBM), a relatively new discrete-space discrete-time method, for computing the flow field. To handle complex, moving and deformable boundaries, we propose a generic voxelization algorithm of the boundaries using depth peeling, […]
Nov, 25

Acceleration Techniques for GPU-based Volume Rendering

Nowadays, direct volume rendering via 3D textures has positioned itself as an efficient tool for the display and visual analysis of volumetric scalar fields. It is commonly accepted, that for reasonably sized data sets appropriate quality at interactive rates can be achieved by means of this technique. However, despite these benefits one important issue has […]
Nov, 24

Using modern graphics architectures for general-purpose computing: a framework and analysis

Recently, graphics hardware architectures have begun to emphasize versatility, offering rich new ways to programmatically reconfigure the graphics pipeline. In this paper, we explore whether current graphics architectures can be applied to problems where general-purpose vector processors might traditionally be used. We develop a programming framework and apply it to a variety of problems, including […]
Nov, 24

Efficient partitioning of fragment shaders for multipass rendering on programmable graphics hardware

Real-time programmable graphics hardware has resource constraints that prevent complex shaders from rendering in a single pass. One way to virtualize these resources is to partition shading computations into multiple passes, each of which satisfies the given constraints. Many such partitions exist for a shader, but it is important to find one that renders efficiently. […]
Nov, 24

Physically-based visual simulation on graphics hardware

In this paper, we present a method for real-time visual simulation of diverse dynamic phenomena using programmable graphics hardware. The simulations we implement use an extension of cellular automata known as the coupled map lattice (CML). CML represents the state of a dynamic system as continuous values on a discrete lattice. In our implementation we […]
Nov, 24

Fast volumetric deformation on general purpose hardware

High performance deformation of volumetric objects is a common problem in computer graphics that has not yet been handled sufficiently. As a supplement to 3D texture based volume rendering, a novel approach is presented, which adaptively subdivides the volume into piecewise linear patches. An appropriate mathematical model based on tri-linear interpolation and its approximations is […]
Nov, 24

A real-time procedural shading system for programmable graphics hardware

Real-time graphics hardware is becoming programmable, but this programmable hardware is complex and difficult to use given current APIs. Higher-level abstractions would both increase programmer productivity and make programs more portable. However, it is challenging to raise the abstraction level while still providing high performance. We have developed a real-time procedural shading language system designed […]
Nov, 24

High-quality pre-integrated volume rendering using hardware-accelerated pixel shading

We introduce a novel texture-based volume rendering approach that achieves the image quality of the best post-shading approaches with far less slices. It is suitable for new flexible consumer graphics hardware and provides high image quality even for low-resolution volume data and non-linear transfer functions with high frequencies, without the performance overhead caused by rendering […]

* * *

* * *

HGPU group © 2010-2024 hgpu.org

All rights belong to the respective authors

Contact us: