Posts
Dec, 2
Improving GPU particle filter with shader model 3.0 for visual tracking
Human-Computer Interaction is evolving towards non-contact devices using perceptual user interfaces. Recent research in human motion analysis and visual object tracking make use of the Particle Filter (PF) framework. The PF algorithm enables the modeling of a stochastic process with an arbitrary probability density function, by approximating it numerically with a set of samples called […]
Dec, 2
APEnet+: a 3D toroidal network enabling Petaflops scale Lattice QCD simulations on commodity clusters
Many scientific computations need multi-node parallelism for matching up both space (memory) and time (speed) ever-increasing requirements. The use of GPUs as accelerators introduces yet another level of complexity for the programmer and may potentially result in large overheads due to the complex memory hierarchy. Additionally, top-notch problems may easily employ more than a Petaflops […]
Dec, 1
Stable fluids
Building animation tools for fluid-like motions is an important and challenging problem with many applications in computer graphics. The use of physics-based models for fluid flow can greatly assist in creating such tools. Physical models, unlike key frame or procedural based techniques, permit an animator to almost effortlessly create interesting, swirling fluid-like behaviors. Also, the […]
Dec, 1
Fast computation of generalized Voronoi diagrams using graphics hardware
We present a new approach for computing generalized 2D and 3D Voronoi diagrams using interpolation-based polygon rasterization hardware. We compute a discrete Voronoi diagram by rendering a three dimensional distance mesh for each Voronoi site. The polygonal mesh is a bounded-error approximation of a (possibly) non-linear function of the distance between a site and a […]
Dec, 1
End-to-end data reduction and hardware accelerated rendering techniques for visualizing time-varying non-uniform grid volume data
We present a systematic approach for direct volume rendering terascale-sized data that are time-varying, and possibly non-uniformly sampled, using only a single commodity graphics PC. Our method employs a data reduction scheme that combines lossless, wavelet-based progressive data access with a user-directed, hardware-accelerated data packing technique. Data packing is achieved by discarding data blocks with […]
Dec, 1
Programming video cards for computational electromagnetics applications
Recently, programming tools have become available to researchers and scientists that allow the use of video cards for general-purpose calculations in computational electromagnetics applications. Over the past few years, developments in the field of graphic processing units (GPUs) for video cards have vastly outpaced their general central processing unit (CPU) counterparts. As specifically applied to […]
Dec, 1
Example-based volume illustrations
Scientific illustrations use accepted conventions and methodologies to effectively convey object properties and improve our understanding. We present a method to illustrate volume datasets by emulating example illustrations. As with technical illustrations, our volume illustrations more clearly delineate objects, enrich details, and artistically visualize volume datasets. For both color and scalar 3D volumes, we have […]
Dec, 1
self-CD: Interactive Self-collision Detection for Deformable Body Simulation Using GPUs
This paper presents an efficient self-collision detection algorithm for deformable body simulation using programmable graphics processing units(GPUs). The proposed approach stores a triangular mesh representation of a deformable model as 1D textures and rapidly detects self-collisions between all pairs of triangular primitives using the programmable SIMD capability of GPUs [1]. Since pre-computed spatial structure such […]
Dec, 1
The magic volume lens: an interactive focus+context technique for volume rendering
The size and resolution of volume datasets in science and medicine are increasing at a rate much greater than the resolution of the screens used to view them. This limits the amount of data that can be viewed simultaneously, potentially leading to a loss of overall context of the data when the user views or […]
Dec, 1
Hardware-accelerated 3D visualization of mass spectrometry data
We present a system for three-dimensional visualization of complex liquid chromatography-mass spectrometry (LCMS) data. Every LCMS data point has three attributes: time, mass, and intensity. Instead of the traditional visualization of two-dimensional subsets of the data, we visualize it as a height field or terrain in 3D. Unlike traditional terrains, LCMS data has non-linear sampling […]
Dec, 1
Streaming architectures and technology trends
Modern technology allows the designers of today’s processors to incorporate enormous computation resources into their latest chips. The challenge for these architects is to translate the increase in capability to an increase in performance. The last decade of graphics processor development shows that GPU designers have succeeded spectacularly at this task. In this chapter, we […]
Nov, 30
Unsupervised Markovian Segmentation on Graphics Hardware
This contribution shows how unsupervised Markovian segmentation techniques can be accelerated when implemented on graphics hardware equipped with a Graphics Processing Unit (GPU). Our strategy exploits the intrinsic properties of local interactions between sites of a Markov Random Field model with the parallel computation ability of a GPU. This paper explains how classical iterative site-wise-update […]