hgpu.org » AMD Radeon Instinct MI350X
Gang Liao, Hongsen Qin, Ying Wang, Alicia Golden, Michael Kuchnik, Yavuz Yetim, Jia Jiunn Ang, Chunli Fu, Yihan He, Samuel Hsia, Zewei Jiang, Dianshi Li, Uladzimir Pashkevich, Varna Puvvada, Feng Shi, Matt Steiner, Ruichao Xiao, Nathan Yan, Xiayu Yu, Zhou Fang, Abdul Zainul-Abedin, Ketan Singh, Hongtao Yu, Wenyuan Chi, Barney Huang, Sean Zhang, Noah Weller, Zach Marine, Wyatt Cook, Carole-Jean Wu, Gaoxiang Liu
Tags: AI, AMD Radeon Instinct MI300X, AMD Radeon Instinct MI350X, ATI, Computer science, CUDA, Deep learning, Heterogeneous systems, LLM, nVidia, nVidia A100, nVidia H100, PTX, ROCm, Triton
January 4, 2026 by hgpu
Ryan Swann, Muhammad Osama, Xiaohu Guo, Bryant Nelson, Lixun Zhang, Alex Brown, Yen Ong, Ali Yazdani, Sean Siddens, Ganesh Dasika, Alex Underwood
Tags: AMD, AMD Radeon Instinct MI300X, AMD Radeon Instinct MI350X, ATI, BLAS, Computer science, HPC, Package, Performance, ROCm, Triton
December 7, 2025 by hgpu
Recent source codes
* * *
Most viewed papers (last 30 days)
- CUDA-L2: Surpassing cuBLAS Performance for Matrix Multiplication through Reinforcement Learning
- PEAK: A Performance Engineering AI-Assistant for GPU Kernels Powered by Natural Language Transformations
- Hardware Acceleration for Neural Networks: A Comprehensive Survey
- cuPilot: A Strategy-Coordinated Multi-agent Framework for CUDA Kernel Evolution
- Tilus: A Tile-Level GPGPU Programming Language for Low-Precision Computation
- BoltzGen:Toward Universal Binder Design
- Beyond Code Pairs: Dialogue-Based Data Generation for LLM Code Translation
- The New Compiler Stack: A Survey on the Synergy of LLMs and Compilers
- AccelOpt: A Self-Improving LLM Agentic System for AI Accelerator Kernel Optimization
- SeedFold: Scaling Biomolecular Structure Prediction
* * *




