Several acoustic simulation methods have been introduced during the past decades. Wave-based simulation methods have been one of the alternatives, but their applicability for wideband acoustic simulation has been limited by the computing power of available hardware. During recent years, the processing power and programmability of graphics processing units have improved, and therefore several wave-based […]

January 19, 2014 by hgpu

High performance underwater acoustic models are of great importance for enabling real-time acoustic source tracking, geoacoustic inversion, environmental monitoring and high-frequency underwater communications. Given the parallelizable nature of raytracing, in general, and of the ray superposition algorithm in particular, use of multiple computing units for the development of real-time efficient applications based on ray tracing […]

January 14, 2014 by hgpu

Given the tendency of creating interfaces between human and machines that increasingly allow simple ways of interaction, it is only natural that research effort is put into techniques that seek to simulate the most conventional mean of communication humans use: the speech. In the human auditory system, voice is automatically processed by the brain in […]

August 28, 2013 by hgpu

The sound field rendering is a technique to compute the sound field from the three-dimensional numerical models constructed in the computer, and it is the same concept as the graphics rendering in the computer graphics. In this paper, a GPU (Graphics Processing Unit) cluster system is applied to the sound field rendering for a large […]

August 2, 2013 by hgpu

Sound synthesis based on physical models of musical instruments is, ultimately, an exercise in numerical simulation. As such, for complex systems of the type seen in musical acoustics, simulation can be a computationally costly undertaking, particularly if simplifying hypotheses, such as those of traveling wave or mode decompositions are not employed. In this paper, large […]

June 26, 2013 by hgpu

In this paper, a room acoustics simulation using a finite difference approximation on a face-centered cubic (FCC) grid with finite volume impedance boundary conditions is presented. The finite difference scheme is accelerated on an Nvidia Tesla K20 graphics processing unit (GPU) using the CUDA programming language. A performance comparison is made between 27-point finite difference […]

June 25, 2013 by hgpu

The computation of virtual acoustics for physical modelling synthesis using the finite difference time domain is a computationally expensive process, especially at audio rates such as 44.1kHz. However, the high level of dataindependence is well suited to parallel architectures such as those provided by graphics processing units. This paper describes the use of the latest […]

June 14, 2013 by hgpu

In recent years, the computational power of modern processors has been increasing mainly because of the increase in the number of processor cores. Computationally intensive applications can gain from this trend only if they employ parallelism, such as thread-level parallelization. Geometric simulations can employ thread-level parallelization because the main part of a geometric simulation can […]

April 26, 2013 by hgpu

The simulation of ultrasound images is usually based on two main strategies: either a linear convolution or the use of an acoustic model. However, only the linear propagation of the pressure wave is considered on the simulation tools generally used. CREANUIS is a recent simulation tool (freely available on the Internet) which implements the nonlinear […]

April 16, 2013 by hgpu

The computation of large-scale virtual acoustics using the 3D finite difference time domain (FDTD) is prohibitively computationally expensive, especially at high audio sample rates, when using traditional CPUs. In recent years the computer gaming industry has driven the development of extremely powerful Graphics Processing Units (GPUs). Through specialised development and tuning we can exploit the […]

March 5, 2013 by hgpu

Graphics Processing Units (GPUs) have been recently used as coprocessors capable of performing tasks that are not necessarily related to graphics processing in order to optimize computing resources. The use of GPUs has being extended to a wide variety of intensive-computation applications among which audio processing is included. However data transactions between the CPU and […]

December 14, 2012 by hgpu

We present CUDACLAW, a data-parallel solution framework for 2D and 3D hyperbolic partial differential equation (PDE) systems. CUDACLAW is a finite volume method based on time adaptive point-wise Riemann problem solvers, and can handle linear and nonlinear problems. The framework is tailored for the GPU architecture, optimized to take advantage of the powerful computational potential, […]

December 12, 2012 by hgpu