We present an algorithm to simulate the many-body depletion interaction between anisotropic colloids in an implicit way, integrating out the degrees of freedom of the depletants, which we treat as an ideal gas. Because the depletant particles are statistically independent and the depletion interaction is short-ranged, depletants are randomly inserted in parallel into the excluded […]

August 31, 2015 by hgpu

Graphics processing units (GPUs) have become increasingly powerful in recent years. Programs exploring the advantages of this architecture could achieve large performance gains and this is the aim of new initiatives in high performance computing. The objective of this work is to develop an efficient tool to model 2D elastic wave propagation on parallel computing […]

August 21, 2015 by hgpu

A GPU code has been developed for a phase-field lattice Boltzmann (PFLB) method, which can simulate the dendritic growth with motion of solids in a dilute binary alloy melt. The GPU accelerated PFLB method has been implemented using CUDA C. The equiaxed dendritic growth in a shear flow and settling condition have been simulated by […]

July 3, 2015 by hgpu

We study the high-velocity regime mode-I fracture instability using large scale simulations. At large driving displacements, the pattern of a single, steady-state crack that propagates in the midline of the sample breaks down, and small microbranches start to appear near the main crack. Some of the features of those microbranches have been reproduced qualitatively in […]

April 1, 2015 by hgpu

Large scale molecular dynamics simulations on graphic processing units (GPUs) are employed to study the scaling behavior of ring polymers with various topological constraints in melts. Typical sizes of rings containing $3_1$, $5_1$ knots and catenanes made up of two unknotted rings scale like $N^{1/3}$ in the limit of large ring sizes $N$. This is […]

December 16, 2014 by hgpu

We study the the non-equilibrium ageing behaviour of the +/-J Edwards-Anderson model in three dimensions for samples of size up to N=128^3 and for up to 10^8 Monte Carlo sweeps. In particular we are interested in the change of the ageing when crossing from the spin-glass phase to the ferromagnetic phase. The necessary long simulation […]

November 25, 2014 by hgpu

We present a highly optimized implementation of a Monte Carlo (MC) simulator for the three-dimensional Ising spin-glass model with bimodal disorder, i.e., the 3D Edwards-Anderson model running on CUDA enabled GPUs. Multi-GPU systems exchange data by means of the Message Passing Interface (MPI). The chosen MC dynamics is the classic Metropolis one, which is purely […]

November 5, 2014 by hgpu

Understanding the interaction of vortices with inclusions in type-II superconductors is a major outstanding challenge both for fundamental science and energy applications. At application-relevant scales, the long-range interactions between a dense configuration of vortices and the dependence of their behavior on external parameters, such as temperature and an applied magnetic field, are all important to […]

October 3, 2014 by hgpu

We develop a parallel rejection algorithm to tackle the problem of low acceptance in Monte Carlo methods, and apply it to the simulation of the hopping conduction in Coulomb glasses using Graphics Processing Units, for which we also parallelize the update of local energies. In two dimensions, our parallel code achieves speedups of up to […]

July 24, 2014 by hgpu

Langer theory of metastability provides a description of the lifetime and properties of the metastable phase of the Ising model field-driven transition, describing the magnetic field-driven transition in ferromagnets and the chemical potential-driven transition of fluids. An immediate further step is to apply it to the study of a transition driven by the temperature, as […]

April 4, 2014 by hgpu

We present a scheme for the parallelization of quantum Monte Carlo on graphical processing units, focusing on bosonic systems and variational Monte Carlo. We use asynchronous execution schemes with shared memory persistence, and obtain an excellent acceleration. Comparing with single core execution, GPU-accelerated code runs over x100 faster. The CUDA code is provided along with […]

December 6, 2013 by hgpu

Monte Carlo simulations of the Ising model play an important role in the field of computational statistical physics, and they have revealed many properties of the model over the past few decades. However, the effect of frustration due to random disorder, in particular the possible spin glass phase, remains a crucial but poorly understood problem. […]

November 25, 2013 by hgpu