Zheng Yi Wu, Mahmoud Elmaghraby
Artificial neural network (ANN) is widely applied as the data-driven modeling tool in hydroinformatics due to its broad applicability of handling implicit and nonlinear relationships between the input and output data. To obtain a reliable ANN model, training ANN using the data is essential, but the training is usually taking many hours for a large […]
View View   Download Download (PDF)   
Andres More
This work reviews the experience of implementing different versions of the SSPR rank-one update operation of the BLAS library. The main objective was to contrast CPU versus GPU implementation effort and complexity of an optimized BLAS routine, not considering performance. This work contributes with a sample procedure to compare BLAS kernel implementations, how to start […]
View View   Download Download (PDF)   
Jan Vanek, Jan Trmal, Josef V. Psutka, Josef Psutka
Gaussian mixture models (GMMs) are often used in various data processing and classification tasks to model a continuous probability density in a multi-dimensional space. In cases, where the dimension of the feature space is relatively high (e.g. in the automatic speech recognition (ASR)), GMM with a higher number of Gaussians with diagonal covariances (DC) instead […]
View View   Download Download (PDF)   
Tyler Killian, Daniel L. Faircloth, Sadasiva M. Rao
In this paper, we have shown that exploitation of the GPU’s massively parallel architecture can dramatically increase the speed of MoM calculations. While the code can certainly be improved, matrix fill speed-up factors are already commonly found to be between 150X-260X. The conjugate gradient solver stands to be improved at this writing but still results […]
View View   Download Download (PDF)   
Baptiste Charmette, Eric Royer, Frederic Chausse
Matching image features between an image and a map of landmarks is usually a time consuming process in mobile robot localization or Simultaneous Localisation And Mapping algorithms. The main problem is being able to match features in spite of viewpoint changes. Methods based on interest point descriptors such as SIFT have been implemented on GPUs […]
View View   Download Download (PDF)   
D. C. Rapaport
Design considerations for molecular dynamics algorithms capable of taking advantage of the computational power of a graphics processing unit (GPU) are described. Accommodating the constraints of scalable streaming-multiprocessor hardware necessitates a reformulation of the underlying algorithm. Performance measurements demonstrate the considerable benefit and cost-effectiveness of such an approach, which produces a factor of 2.5 speed […]
View View   Download Download (PDF)   

* * *

* * *

Follow us on Twitter

HGPU group

1665 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

339 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: