13790

Applications

Zi'ang Ding, Zhanping Liu, Yang Yu, Wei Chen
This paper presents an accurate parallel implementation of unsteady flow line integral convolution (UFLIC) for high-performance visualization of large time-varying flows. Our approach differs from previous implementations by using a novel value scattering+gathering mechanism to parallelize UFLIC and designing a pathline reuse strategy to reduce the computational cost of pathline integration. By exploiting the massive […]
View View   Download Download (PDF)   
Jiang Lei, Xian Wang, Gongnan Xie
Direct numerical simulation (DNS) of a round jet in crossflow based on lattice-Boltzmann method (LBM) is carried out on multi-GPU cluster. Data-parallel SIMT (Single- Instruction Multiple-Thread) characteristic of GPU matches the parallelism of LBM well, which leads to the high efficiency of GPU on the LBM solver. With present GPU settings (6 Nvidia Telsa K20M), […]
View View   Download Download (PDF)   
Sergey Zabelok, Robert Arslanbekov, Vladimir Kolobov
This paper describes recent progress towards porting a Unified Flow Solver (UFS) to heterogeneous parallel computing. UFS is an adaptive kinetic-fluid simulation tool, which combines Adaptive Mesh Refinement (AMR) with automatic cell-by-cell selection of kinetic or fluid solvers based on continuum breakdown criteria. The main challenge of porting UFS to graphics processing units (GPUs) comes […]
View View   Download Download (PDF)   
Lukasz Laniewski-Wollk, Jacek Rokicki
In this paper we present a topology optimization technique applicable to a broad range of flow design problems. We propose also a discrete adjoint formulation effective for a wide class of Lattice Boltzmann Methods (LBM). This adjoint formulation is used to calculate sensitivity of the LBM solution to several type of parameters, both global and […]
View View   Download Download (PDF)   
Mahmut Murat Gocmen
In recent years clock speeds and memory bandwidths of Graphics Processing Units (GPUs) increased dramatically compared to CPUs. Also GPU vendors developed and freely released new programming tools to make scientific computing on GPUs easier. With these recent developments the use of GPUs for general purpose computing becomes a popular research field. Researchers previously demonstrated […]
Xiao Nie, Leiting Chen, Tao Xiang
We present a parallel framework for simulating incompressible fluids with predictive-corrective incompressible Smoothed Particle Hydrodynamics (PCISPH) on the GPU in real time. To this end, we propose an efficient GPU streaming pipeline to map the entire computational task onto the GPU, fully exploiting the massive computational power of state-of-the-art GPUs. In PCISPH-based simulations, neighbor search […]
View View   Download Download (PDF)   
Jelena Tekic, Predrag Tekic, Milos Rackovic
This paper presents performance comparison, of the lid-driven cavity flow simulation, with Lattice Boltzmann method, example, between CUDA and OpenCL parallel programming frameworks. CUDA is parallel programming model developed by NVIDIA for leveraging computing capabilities of their products. OpenCL is an open, royalty free, standard developed by Khronos group for parallel programming of heterogeneous devices […]
View View   Download Download (PDF)   
W. P. Gaudin, A. C. Mallinson, O. Perks, J. A. Herdman, D. A. Beckingsale, J. M. Levesque, M. Boulton, S. McIntosh-Smith, S. A. Jarvis
Power constraints are forcing HPC systems to continue to increase hardware concurrency. Efficiently scaling applications on future machines will be essential for improved science and it is recognised that the "flat" MPI model will start to reach its scalability limits. The optimal approach is unknown, necessitating the use of mini-applications to rapidly evaluate new approaches. […]
Dale Nicholas Rattermann
Fast Poisson solvers using the Fast Fourier Transform on uniform grids are especially suited for parallel implementation, making them appropriate for portability on graphical processing unit (GPU) devices. The goal of the following work was to implement, test, and evaluate a fast Poisson solver for periodic boundary conditions for use on a variety of GPU […]
View View   Download Download (PDF)   
Amirsaman Farrokhpanah, Hanif Montazeri, Javad Mostaghimi
Capabilities of using Graphic Processing Units (GPU) as a computational tool in CFD have been investigated here. Several solvers for solving linear matrix equations have been benchmarked on GPU and is shown that Gauss-Seidle gives the best performance for the GPU architecture. Compared to CPU on a case of lid-driven cavity flow, speedups of up […]
View View   Download Download (PDF)   
Evan E. Schneider, Brant E. Robertson
We present Cholla (Computational Hydrodynamics On ParaLLel Architectures), a new three-dimensional hydrodynamics code that harnesses the power of graphics processing units (GPUs) to accelerate astrophysical simulations. Cholla models the Euler equations on a static mesh using state-of-the-art techniques, including the unsplit Corner Transport Upwind (CTU) algorithm, a variety of exact and approximate Riemann solvers, and […]
View View   Download Download (PDF)   
Changsheng Huang, Baochang Shi, Zhaoli Guo, Zhenhua Chai
Conducting lattice Boltzmann method on GPU has been proved to be an effective manner to gain a significant performance benefit, thus the GPU or multi-GPU based lattice Boltzmann method is considered as a promising and competent candidate in the study of large-scale complex fluid flows. In this work, a multi-GPU based lattice Boltzmann algorithm coupled […]
View View   Download Download (PDF)   
Page 1 of 2912345...1020...Last »

* * *

* * *

Like us on Facebook

HGPU group

230 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1427 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: