12590
John Ashley, Amy J. Braverman
Multi-trial sampled K-means performance and scalability is studied as a stepping stone towards a Graphical Processing Unit implementation of Entropy Constrained Vector Quantization for interactive data compression. Basic parallelization strategies and data layout impacts are explored with K-means. The K-means implementation is extended to Entropy Constrained Vector Quantization, and additional tuning specific to the anticipated […]
View View   Download Download (PDF)   
Adam McLaughlin, David A. Bader
Graphs that model social networks, numerical simulations, and the structure of the Internet are enormous and cannot be manually inspected. A popular metric used to analyze these networks is betweenness centrality, which has applications in community detection, power grid contingency analysis, and the study of the human brain. However, these analyses come with a high […]
Fengguang Song, Jack Dongarra
Aiming to fully exploit the computing power of all CPUs and all GPUs on hybrid CPU-GPU systems to solve dense linear algebra problems, we design a class of heterogeneous tile algorithms to maximize the degree of parallelism, to minimize the communication volume, as well as to accommodate the heterogeneity between CPUs and GPUs. The new […]
View View   Download Download (PDF)   
Tobias Hartmann
Sum-Product Networks (SPNs) are a deep architecture recently proposed for image classification and modeling. In contrast to loopy graphical models commonly used in computer vision, exact inference and learning in SPNs is tractable. As long as consistency and completeness are ensured, an SPN allows to efficiently calculate the partition function and all marginals of graphical […]
View View   Download Download (PDF)   
Peng Di
This thesis attempts to design and implement a compiler framework based on the polyhedral model. The compiler automatically parallelizes loop nests; especially stencil kernels, into efficient GPU code by loop tiling transformations which the polyhedral model describes. To enhance parallel performance, we introduce three practically efficient techniques to process different types of loop nests. The […]
View View   Download Download (PDF)   
Pawel Rosciszewski
Rapid development of diverse computer architectures and hardware accelerators caused that designing parallel systems faces new problems resulting from their heterogeneity. Our implementation of a parallel system called KernelHive allows to efficiently run applications in a heterogeneous environment consisting of multiple collections of nodes with different types of computing devices. The execution engine of the […]
View View   Download Download (PDF)   
Ke Ding, Ying Tan
Benchmarking is key for developing and comparing optimization algorithms. In this paper, a CUDA-based real parameter optimization benchmark (cuROB) is introduced. Test functions of diverse properties are included within cuROB and implemented efficiently with CUDA. Speedup of one order of magnitude can be achieved in comparison with CPU-based benchmark of CEC’14.
Bryan Ching
Lossless data compression is used to reduce storage requirements, allowing for the relief of I/O channels and better utilization of bandwidth. The Lempel-Ziv lossless compression algorithms form the basis for many of the most commonly used compression schemes. General purpose computing on graphic processing units (GPGPUs) allows us to take advantage of the massively parallel […]
View View   Download Download (PDF)   
Ichitaro Yamazaki, Stanimire Tomov, Tingxing Dong, Jack Dongarra
We propose a mixed-precision orthogonalization scheme that takes the input matrix in a standard 32 or 64-bit floating-point precision, but uses higher-precision arithmetics to accumulate its intermediate results. For the 64-bit precision, our scheme uses software emulation for the higher-precision arithmetics, and requires about 20x more computation but about the same amount of communication as […]
View View   Download Download (PDF)   
Jianbin Fang, Henk Sips, Ana Lucia Varbanescu
Due to the increasing complexity of multi/many-core architectures (with their mix of caches and scratch-pad memories) and applications (with different memory access patterns), the performance of many workloads becomes increasingly variable. In this work, we address one of the main causes for this performance variability: the efficiency of the memory system. Specifically, based on an […]
Andrey Vladimirov, Vadim Karpusenko, Tony Yoo
The key innovation brought about by Intel Xeon Phi coprocessors is the possibility to port most HPC applications to manycore computing accelerators without code modification. One of the reasons why this is possible is support for file input/output (I/O) directly from applications running on coprocessors. These facilities allow seamless usage of manycore accelerators in common […]
View View   Download Download (PDF)   
Abu Asaduzzaman, Hin Y. Lee
Although the graphics processing unit (GPU) was originally designed to accelerate the image creation for output to display, today’s general purpose GPU (GPGPU) computing offers unprecedented performance by offloading computing-intensive portions of the application to the GPGPU, while running the remainder of the code on the central processing unit (CPU). The highly parallel structure of […]
View View   Download Download (PDF)   
Page 1 of 47012345...102030...Last »

* * *

* * *

Like us on Facebook

HGPU group

128 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1194 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: