12996
Kazuya Matsumoto, Naohito Nakasato, Stanislav Sedukhin
This paper presents an implementation of different matrix-matrix multiplication routines in OpenCL. We utilize the high-performance GEMM (GEneral Matrix-Matrix Multiply) implementation from our previous work for the present implementation of other matrix-matrix multiply routines in Level-3 BLAS (Basic Linear Algebra Subprograms). The other routines include SYMM (Symmetric Matrix-Matrix Multiply), SYRK (Symmetric Rank-K Update), SYR2K (Symmetric […]
View View   Download Download (PDF)   
Xiangyu Guo, Xing Liu, Peng Xu, Zhihui Du, Edmond Chow
The particle-mesh spreading operation maps a value at an arbitrary particle position to contributions at regular positions on a mesh. This operation is often used when a calculation involving irregular positions is to be performed in Fourier space. We study several approaches for particle mesh spreading on GPUs. A central concern is the use of […]
View View   Download Download (PDF)   
Lokendra Singh Panwar
Today, heterogeneous computing has truly reshaped the way scientists think and approach high-performance computing (HPC). Hardware accelerators such as general-purpose graphics processing units (GPUs) and Intel Many Integrated Core (MIC) architecture continue to make in-roads in accelerating large-scale scientific applications. These advancements, however, introduce new sets of challenges to the scientific community such as: selection […]
View View   Download Download (PDF)   
Daniel Povey, Xiaohui Zhang, Sanjeev Khudanpur
We describe the neural-network training framework used in the Kaldi speech recognition toolkit, which is geared towards training DNNs with large amounts of training data using multiple GPU-equipped or multi-core machines. In order to be as hardware-agnostic as possible, we needed a way to use multiple machines without generating excessive network traffic. Our method is […]
View View   Download Download (PDF)   
Tyler Rey Sorensen
Graphics Processing Units (GPUs) are highly parallel shared memory microprocessors, and as such, they are prone to the same concurrency considerations as their traditional multicore CPU counterparts. In this thesis, we consider shared memory consistency, i.e. what values can be read when issued concurrently with writes on current GPU hardware. While memory consistency has been […]
View View   Download Download (PDF)   
David Markvica
The longest common subsequence (LCS) problem is one of the classic problems in string processing. It is commonly used in file comparison, pattern recognition, and computational biology as a measure of sequence similarity. Given a set of strings, the LCS is the longest string that is a subsequence of every string in the set. For […]
View View   Download Download (PDF)   
Alexey Kolesnichenko, Christopher M. Poskitt, Sebastian Nanz, Bertrand Meyer
Using GPUs as general-purpose processors has revolutionized parallel computing by offering, for a large and growing set of algorithms, massive data-parallelization on desktop machines. As an obstacle to widespread adoption, programming GPUs has remained difficult due to the need of using low-level control of the hardware to achieve good performance. This paper suggests a programming […]
Shousheng Liu, Ge Chen, Chunyong Ma, Yong Han
The existing matrix palette algorithms for skeletal animation are accelerated by the technique GPGPU based on GLSL or CUDA. Because GLSL is extended from graphics library OpenGL, it couples the rendering and calculations together closely and forces itself not convenient to reuse, meanwhile CUDA is designed only for NVIDIA GPUs. In this paper GPGPU based […]
View View   Download Download (PDF)   
David D. Prentiss
This work introduces a bilevel, stochastic optimization problem aimed at robust, regional evacuation network design and shelter location under uncertain hazards. A regional planner, acting as a Stackelberg leader, chooses among evacuation-route contraflow operation and shelter location to minimize the expected risk exposure to evacuees. Evacuees then seek an equilibrium with respect to risk exposure […]
View View   Download Download (PDF)   
Jose M Gonzalez-Linares, Antonio Fuentes-Alventosa, Juan Gomez-Luna, Nicolas Guil
Data compression is the process of representing information in a compact form, in order to reduce the storage requirements and, hence, communication bandwidth. It has been one of the critical enabling technologies for the ongoing digital multimedia revolution for decades. In the variable-length encoding (VLE) compression method, most frequently occurring symbols are replaced by codes […]
View View   Download Download (PDF)   
Piotr Przymus
In recent years, processing and exploration of time series has experienced a noticeable interest. Growing volumes of data and needs of efficient processing pushed the research in new directions, including hardware based solutions. Graphics Processing Units (GPU) have significantly more applications than just rendering images. They are also used in general purpose computing to solve […]
View View   Download Download (PDF)   
Zhenwen Dai, Andreas Damianou, James Hensman, Neil Lawrence
In this work, we present an extension of Gaussian process (GP) models with sophisticated parallelization and GPU acceleration. The parallelization scheme arises naturally from the modular computational structure w.r.t. datapoints in the sparse Gaussian process formulation. Additionally, the computational bottleneck is implemented with GPU acceleration for further speed up. Combining both techniques allows applying Gaussian […]
View View   Download Download (PDF)   
Page 1 of 48412345...102030...Last »

* * *

* * *

Like us on Facebook

HGPU group

171 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1282 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: