Dennis Felsing
Complex networks have received interest in a wide area of applications, ranging from road networks over hyperlink connections in the world wide web to interactions between people. Advanced algorithms are required for the generation as well as visualization of such graphs. In this work two graph algorithms, one for graph generation, the other for graph […]
View View   Download Download (PDF)   
Agnieszka Lupinska
We present a simple parallel algorithm to test chordality of graphs which is based on the parallel Lexicographical Breadth-First Search algorithm. In total, the algorithm takes time O(N) on N-threads machine and it performs work O(N^2), where N is the number of vertices in a graph. Our implementation of the algorithm uses a GPU environment […]
View View   Download Download (PDF)   
Unnikrishnan C, Y N Srikant, Rupesh Nasre
Graph algorithms are used in several domains such as social networking, biological sciences, computational geometry, and compilers, to name a few. It has been shown that they possess enough parallelism to keep several computing resources busy – even hundreds of cores on a GPU. Unfortunately, tuning their implementation for efficient execution on a particular hardware […]
View View   Download Download (PDF)   
Yuechao Pan, Yangzihao Wang, Yuduo Wu, Carl Yang, John D. Owens
We present a multi-GPU graph processing library that allows programmers to easily extend single-GPU graph algorithms to achieve scalable performance on large graph datasets with billions of edges. Our design only requires users to specify a few algorithm-dependent blocks, hiding most multi-GPU related implementation details. Our design effectively overlaps computation and data transfer and implements […]
View View   Download Download (PDF)   
Scott Sallinen, Abdullah Gharaibeh, Matei Ripeanu
Large scale-free graphs are famously difficult to process efficiently: the highly skewed vertex degree distribution makes it difficult to obtain balanced workload partitions for parallel processing. Our research instead aims to take advantage of vertex degree heterogeneity by partitioning the workload to match the strength of the individual computing elements in a hybrid architecture. This […]
View View   Download Download (PDF)   
Adam Polak
The clustering coefficient and the transitivity ratio are concepts often used in network analysis, which creates a need for fast practical algorithms for counting triangles in large graphs. Previous research in this area focused on sequential algorithms, MapReduce parallelization, and fast approximations. In this paper we propose a parallel triangle counting algorithm for CUDA GPU. […]
Stanley Tsang
Two well-known bipartite graph matching algorithms, the Gale-Shapley algorithm and the Hungarian (Kuhn-Munkres) algorithm, has been ported to run on General-Purpose Graphics Processing Units (GPGPU) using kernels written with the CUDA programming model. This was done with the goal of characterising and assessing the performance and behaviour of these matching algorithms on the GPU, and […]
View View   Download Download (PDF)   
Ha-Nguyen Tran, Jung-jae Kim, Bingsheng He
Subgraph matching is the task of finding all matches of a query graph in a large data graph, which is known as an NP-complete problem. Many algorithms are proposed to solve this problem using CPUs. In recent years, Graphics Processing Units (GPUs) have been adopted to accelerate fundamental graph operations such as breadth-first search and […]
View View   Download Download (PDF)   
Ana Lucia Varbanescu, Merijn Verstraaten, Cees de Laat, Ate Penders, Alexandru Iosup, Henk Sips
Due to increasingly large datasets, graph analytics – traversals, all-pairs shortest path computations, centrality measures, etc. – are becoming the focus of high-performance computing (HPC). Because HPC is currently dominated by many-core architectures (both CPUs and GPUs), new graph processing solutions have to be defined to efficiently use such computing resources. Prior work focuses on […]
View View   Download Download (PDF)   
Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, John D. Owens
For large-scale graph analytics on the GPU, the irregularity of data access and control flow and the complexity of programming GPUs have been two significant challenges for developing a programmable high-performance graph library. "Gunrock", our graph-processing system, uses a high-level bulk-synchronous abstraction with traversal and computation steps, designed specifically for the GPU. Gunrock couples high […]
Amlan Chatterjee
The availability of Graphics Processing Units (GPUs) with multicore architecture have enabled parallel computations using extensive multi-threading. Recent advancements in computer hardware have led to the usage of graphics processors for solving general purpose problems. Using GPUs for computation is a highly efficient and low-cost alternative as compared to currently available multicore Central Processing Units […]
View View   Download Download (PDF)   
Zhang Jingbo
Graph mining and data management has become a significant area because more and more new applications to various data mining problems in social networking, computational biology, chemical data analysis and drug discovery are emerging recently. Although traditional mining methods have been extended to process graphs, many graph applications still confront huge challenges due to continuous […]
View View   Download Download (PDF)   
Page 1 of 1012345...10...Last »

* * *

* * *

Follow us on Twitter

HGPU group

1658 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

335 people like HGPU on Facebook

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: