Tags: AMD Radeon Instinct MI100, ATI, Bioinformatics, Biology, CUDA, Next-Generation sequencing, nVidia, nVidia GeForce RTX 3090, OpenCL, Package, Sequence alignment, Tesla A100
Tags: Biology, Computer science, Java, Next-Generation sequencing, nVidia, OpenCL, Package, R, Tesla K20
Tags: Algorithms, Bayesian, Bioinformatics, Biology, Filtering, Next-Generation sequencing, nVidia, nVidia GeForce GTX 580, nVidia GeForce GTX 780, OpenCL, Package, Thesis
Tags: Algorithms, Biology, CUDA, Databases, Next-Generation sequencing, nVidia, nVidia GeForce GTX 690, nVidia GeForce GTX 780, Package, Smith-Waterman algorithm
Tags: Bioinformatics, Biology, Computer science, CUDA, Next-Generation sequencing, nVidia, nVidia GeForce GTX 770
Tags: Bioinformatics, Biology, CUDA, Next-Generation sequencing, nVidia, Sequence alignment, Tesla K20
Tags: Algorithms, Bioinformatics, Biology, CUDA, Next-Generation sequencing, nVidia, Package, Tesla C2070, Tesla M2050
Tags: Algorithms, Bioinformatics, Biology, CUDA, Next-Generation sequencing, nVidia, nVidia GeForce GTX 480, Package, Python, Smith-Waterman algorithm
Tags: Algorithms, Biology, CUDA, Databases, Next-Generation sequencing, nVidia, Package, Tesla S1070
Tags: Bioinformatics, Biology, CUDA, Next-Generation sequencing, nVidia, nVidia GeForce GTX 280, Package
Tags: Bioinformatics, Biology, CUDA, MPI, Next-Generation sequencing, nVidia, OpenMP, Package, Tesla S1070
Recent source codes
Most viewed papers (last 30 days)
- Performance Portable Gradient Computations Using Source Transformation
- ConTraPh: Contrastive Learning for Parallelization and Performance Optimization
- Block: Balancing Load in LLM Serving with Context, Knowledge and Predictive Scheduling
- Understanding the Landscape of Ampere GPU Memory Errors
- Geak: Introducing Triton Kernel AI Agent & Evaluation Benchmarks
- SIGMo: High-Throughput Batched Subgraph Isomorphism on GPUs for Molecular Matching
- GBOTuner: Autotuning of OpenMP Parallel Codes with Bayesian Optimization and Code Representation Transfer Learning
- DGEMM without FP64 Arithmetic - using FP64 Emulation and FP8 Tensor Cores with Ozaki Scheme
- Luthier: Bridging Auto-Tuning and Vendor Libraries for Efficient Deep Learning Inference
- OpenDwarfs 2025: Modernizing the OpenDwarfs Benchmark Suite for Heterogeneous Computing