13915
Joris Cramwinckel
In this thesis we present a state-of-the-art approach to accelerate Monte Carlo valuations of embedded options. Due to regulations and improved risk management, nested simulations (scenarios in scenarios) are becoming increasingly important for institutional investors like: insurance companies, pension funds and housing corporations. Preferably one wishes to use a framework in which multiple related problems […]
View View   Download Download (PDF)   
Reza Nakhjavani
The ever increasing complexity of scientific applications has led to utilization of new HPC paradigms such as Graphical Processing Units (GPUs). However, modifying applications to run on GPU is challenging. Furthermore, the speedup achieved by using GPUs has added a huge heterogeneity to HPC clusters. In this dissertation, we enabled NPAIRS, a neuro-imaging application, to […]
View View   Download Download (PDF)   
Lena Oden
Today, GPUs and other parallel accelerators are widely used in high performance computing, due to their high computational power and high performance per watt. Still, one of the main bottlenecks of GPU-accelerated cluster computing is the data transfer between distributed GPUs. This not only affects performance, but also power consumption. Often, a data transfer between […]
View View   Download Download (PDF)   
Jack Edward Arnstein
Having learned a great deal about the problem and also the solutions over the course of this project, it is the opinion of the author that the method undertaken within this report is unsatisfactory for delivering performance enhancement over alternative approaches. Firstly the domain transfers result in reduced performance. For larger simulations these prove to […]
View View   Download Download (PDF)   
Daniel Benjamin Taylor
Digital holograms, when combined with tracer particles, can be used for examining otherwise-invisible fluid flows. These holograms can be captured with standard digital imaging equipment, however processing them to extract tracer or particle locations is computationally expensive. Exacerbating the issue is that hundreds or thousands of holograms must be reconstructed to analyze a single flow.Presented […]
View View   Download Download (PDF)   
Chen Fan
In this dissertation, we have proposed our solutions to four important and challenging topics in enhancing fluid modeling with turbulence and acceleration: distance field representation of obstacles in fluid, adaptive and controllable turbulence enhancement, Langevin Particles and GPU acceleration in fluid modeling. All these fields aims at creating realistic and fast fluid field which are […]
View View   Download Download (PDF)   
Shuiying Wang
Since DARPA Urban Challenge 2007 (DUC), the development of autonomous vehicles has attracted increasing attention from both academic institutes and the automotive industry. It is believed that autonomous vehicles sophisticated and reliable enough would redefine mobility. The motion planner and sensor simulation presented in this thesis are intended to contribute to this prospect. The task […]
View View   Download Download (PDF)   
Florentino Sainz
Exascale performance requires a level of energy efficiency only achievable with specialized hardware. Hence, to build a general purpose HPC system with exascale performance different types of processors, memory technologies and interconnection networks will be necessary. Heterogeneous hardware is already present on some top supercomputer systems that are composed of different compute nodes, which at […]
View View   Download Download (PDF)   
Shuotian Chen
Many eigenvalue and eigenvector algorithms begin with reducing the input matrix into a tridiagonal form. A tridiagonal matrix is a matrix that has non-zero elements only on its main diagonal, and the two diagonals directly adjacent to it. Reducing a matrix to a tridiagonal form is an iterative process which uses Jacobi rotations to reduce […]
View View   Download Download (PDF)   
Lukas Gillsjo
Graphics Processing Units (GPU) and their development tools have advanced recently, and industry has become more interested in using them. Among several development frameworks for GPU(s), OpenCL provides a programming environment to write portable code that can run in parallel. This report describes two case studies of algorithm implementations in OpenCL. The first algorithm is […]
View View   Download Download (PDF)   
Arnaud Durand
Recent years have seen an increasing need for computationally efficient implementation of software-defined radio (SDR) systems. Given the limitations of a typical SDR application running on a single machine, we present a distributed SDR system using high-performance techniques. To split a digital signal into multiple channels, we use an efficient digital signal processing technique: a […]
View View   Download Download (PDF)   
Gloria Ortega Lopez
This thesis, entitled "High Performance Computing for solving large sparse systems. Optical Diffraction Tomography as a case of study" investigates the computational issues related to the resolution of linear systems of equations which come from the discretization of physical models described by means of Partial Differential Equations (PDEs). These physical models are conceived for the […]
Page 1 of 7612345...102030...Last »

* * *

* * *

Like us on Facebook

HGPU group

238 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1445 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.3
  • SDK: AMD APP SDK 3.0

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: