Matthias Bach
Quarks and gluons are the building blocks of all hadronic matter, like protons and neutrons. Their interaction is described by Quantum Chromodynamics (QCD), a theory under test by large scale experiments like the Large Hadron Collider (LHC) at CERN and in the future at the Facility for Antiproton and Ion Research (FAIR) at GSI. However, […]
View View   Download Download (PDF)   
Alex Rubinsteyn
The Python programming language has become a popular platform for data analysis and scientific computing. To mitigate the poor performance of Python’s standard interpreter, numerically intensive computations are typically offloaded to library functions written in high-performance compiled languages such as Fortran or C. When there is no efficient library implementation available for a particular algorithm, […]
View View   Download Download (PDF)   
Stanley Tsang
Two well-known bipartite graph matching algorithms, the Gale-Shapley algorithm and the Hungarian (Kuhn-Munkres) algorithm, has been ported to run on General-Purpose Graphics Processing Units (GPGPU) using kernels written with the CUDA programming model. This was done with the goal of characterising and assessing the performance and behaviour of these matching algorithms on the GPU, and […]
View View   Download Download (PDF)   
Angelos Trigkas
OpenCL SYCL is a new heterogeneous and parallel programming framework created by the Khronos Group that tries to bring OpenCL programming into C++. In particular, it enables C++ developers to create OpenCL kernels, using all the popular C++ features, such as classes, inheritance and templates. What is more, it dramatically reduces programming effort and complexity, […]
View View   Download Download (PDF)   
Lan Vu
Current Big Data era is generating tremendous amount of data in most fields such as business, social media, engineering, and medicine. The demand to process and handle the resulting "big data" has led to the need for fast data mining methods to develop powerful and versatile analysis tools that can turn data into useful knowledge. […]
View View   Download Download (PDF)   
Andre B. Amundsen
Graphic processing units (GPUs) have gained popularity in scientific computing the recent years. This is because of the massive computing power they can provide for parallel tasks, and while GPUs are powerful, it is also hard to fully utilize their power. A part of this difficulty comes from the many parameters available, and tuning of […]
View View   Download Download (PDF)   
Andreas Bauer
Many problems in early computer vision, like image segmentation, image reconstruction, 3D vision or object labeling can be modeled by Markov Random Fields (MRF). General algorithms to optimize a MRF like Simulated Annealing, Belief Propagation or Iterated Conditional Modes are either slow or produce low quality results [Rother 07]. On the other hand, in the […]
View View   Download Download (PDF)   
Gabriele Cocco
The last few years has seen activity towards programming models, languages and frameworks to address the increasingly wide range and broad availability of heterogeneous computing resources through raised programming abstraction and portability across different platforms. The effort spent in simplifying parallel programming across heterogeneous platforms is often outweighed by the need for low-level control over […]
Petros Voudouris
Graphics processing units (GPUs) offer massive parallelism. Since a couple of years GPUs can also be used for more general purpose applications; a wide variety of applications can be accelerated efficiently with the use of the CUDA and OpenCL programming models. Real-time systems frequently use many sensors that produce a big amount of data. GPUs […]
View View   Download Download (PDF)   
Arash Ashari
Sparse Matrix-Vector multiplication (SpMV) is one of the key operations in linear algebra. Overcoming thread divergence, load imbalance and un-coalesced and indirect memory access due to sparsity and irregularity are challenges to optimizing SpMV on GPUs. This dissertation develops solutions that address these challenges effectively. The first part of this dissertation focuses on a new […]
View View   Download Download (PDF)   
George Bahijevitch Bahij
Gotran provides a framework for working with systems of ordinary differential equations (ODEs): Its primary goal is to increase the workflow efficiency of computational modelling in biomedical research. The ODEs, given by the time derivative of state variables, are described in a Gotran form file and can be automatically translated into different outputs depending on […]
View View   Download Download (PDF)   
Benjamin J. Block
A system in a metastable state needs to overcome a certain free energy barrier to form a droplet of the stable phase. Standard treatments assume spherical droplets, but this is not appropriate in the presence of an anisotropy, such as for crystals. The anisotropy of the system has a strong effect on their surface free […]
View View   Download Download (PDF)   
Page 1 of 7512345...102030...Last »

* * *

* * *

Like us on Facebook

HGPU group

218 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1406 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: