Jiří Klepl, Adam Šmelko, Lukáš Rozsypal, Martin Kruliš
Junqing Lin, Jingwei Sun, Xiaolong Shi, Honghe Zhang, Xianzhi Yu, Xinzhi Wang, Jun Yao, Guangzhong Sun
Tags: Compilers, Computer science, CUDA, Deep learning, Linear Algebra, Matrix multiplication, Neural networks, nVidia, nVidia GeForce RTX 2080 Ti, Performance, Sparse matrix, Tesla V100
Weihang Gao, Teng Zhao, Yongfa Guo, Jiuyang Liang, Huan Liu, Maoying Luo, Zedong Luo, Wei Qin, Yichao Wang, Qi Zhou, Shi Jin, Zhenli Xu
Jianhua Gao, Weixing Ji, Yizhuo Wang
Wentao Liang, Norihisa Fujita, Ryohei Kobayashi, Taisuke Boku
Luigi Crisci, Lorenzo Carpentieri, Peter Thoman, Aksel Alpay, Vincent Heuveline, Biagio Cosenza
Tags: AMD Radeon Instinct MI100, ATI, Benchmarking, Computer science, Heterogeneous systems, HPC, Intel, Intel Ponte Vecchio Max 1100, nVidia, oneAPI, Portability, SYCL, Tesla V100
Fernando Fernandes dos Santos, Luigi Carro, Flavio Vella, Paolo Rech
Ashwina Kumar, M. Venkata Krishna, Prasanna Bartakke, Rahul Kumar, Rajesh Pandian M, Nibedita Behera, Rupesh Nasre
Tags: Code generation, Computer science, CUDA, DSL, nVidia, nVidia GeForce RTX 2080 Ti, OpenACC, OpenCL, Package, SYCL, Tesla V100
Anton Rydahl, Joseph Huber, Ethan Luis McDonough, Johannes Doerfert
Tags: AMD Radeon Instinct MI250X, AMD Radeon Instinct Mi50, ATI, Benchmarking, Compilers, Computer science, CUDA, HIP, Numerical Analysis, OpenMP, Performance, Tesla A100, Tesla V100
December 18, 2023 by
hgpu