12799
Yuan Wen, Zheng Wang, Michael F.P. O'Boyle
Heterogeneous systems consisting of multiple CPUs and GPUs are increasingly attractive as platforms for high performance computing. Such platforms are usually programmed using OpenCL which provides program portability by allowing the same program to execute on different types of device. As such systems become more mainstream, they will move from application dedicated devices to platforms […]
View View   Download Download (PDF)   
Jason J. Ford, Timothy L. Molloy, Joanne L. Hall
This paper investigates compressed sensing using hidden Markov models (HMMs) and hence provides an extension of recent single frame, bounded error sparse decoding problems into a class of sparse estimation problems containing both temporal evolution and stochastic aspects. This paper presents two optimal estimators for compressed HMMs. The impact of measurement compression on HMM filtering […]
View View   Download Download (PDF)   
Karl Pauwels, Leonardo Rubio, Eduardo Ros
We introduce a real-time system for recognizing and tracking the position and orientation of a large number of complex real-world objects, together with an articulated robotic manipulator operating upon them. The proposed system is fast, accurate and reliable and yet does not require precise camera calibration. The key to this high level of performance is […]
View View   Download Download (PDF)   
Brian Adjetey Boye
Environmental problems and issues are not limited by artificial boundaries created by man. Usually there are different teams or individuals working on the catchments, estuaries, rivers and coastal basins in different countries using different parameters and formulations for various processes. However, the system is a natural one and as such no boundaries exist. When a […]
View View   Download Download (PDF)   
Gines David Guerrero Hernandez, Baldomero Imbernon, Horacio Perez-Sanchez, Francisco Sanz, Jose M. Garcia, Jose M. Cecilia
Bioinformatics is an interdisciplinary research field that develops tools for the analysis of large biological databases, and thus the use of high-performance computing (HPC) platforms is mandatory for the generation of useful biological knowledge. The latest generation of graphics processing units (GPUs) have democratized the use of HPC as they push desktop computers to cluster-level […]
View View   Download Download (PDF)   
Luis-Pedro Garcia, Javier Cuenca, Domingo Gimenez
The use of auto-tuning techniques in a matrix multiplication routine for hybrid CPU+GPU platforms is analyzed. Basic models of the execution time of the hybrid routine and information obtained during its installation are used to optimize the execution time with a balanced assignation of the computation to the computing components in the heterogeneous system. Satisfactory […]
View View   Download Download (PDF)   
M.G.B. Johnson, D. P. Playne, K.A. Hawick
Floating point precision and performance and the ratio of floating point units to integer processing elements on a graphics processing unit accelerator all continue to present complex tradeoffs for optimising core utilisation on modern devices. We investigate various hybrid CPU and GPU combinations using a range of different GPU models occupying different points in this […]
View View   Download Download (PDF)   
Alexander D. Kaiser
In this thesis, I investigate computational questions in Markov chain Monte Carlo (MCMC). I am investigating one new MCMC method called the stretch move ensemble sampler [3]. I have looked at the performance of this algorithm, in terms of acceptance rates, autocorrelation time and compute performance. The thesis describes a parallel implementation of the algorithm […]
View View   Download Download (PDF)   
Xun Jia, Peter Ziegenhein, Steve B Jiang
Recent developments in radiotherapy therapy demand high computation powers to solve challenging problems in a timely fashion in a clinical environment. The graphics processing unit (GPU), as an emerging high-performance computing platform, has been introduced to radiotherapy. It is particularly attractive due to its high computational power, small size, and low cost for facility deployment […]
View View   Download Download (PDF)   
Mohammadhossein Afrasiabi
This thesis explores the possibility of utilizing Graphics Processing Units (GPUs) to address the computational demand of algorithms used to mitigate the inherent physical limitations in devices such as microscopes and 3D-scanners. We investigate the outcome and test our methodology for the following case studies: – the narrow field of view found in microscopes. – […]
View View   Download Download (PDF)   
Frederick R.M. Barnes, Thomas Pressnell, Brendan Le Foll
This paper reports on our experiences of using commodity GPUs to speed-up the execution of fine-grained concurrent simulations. Starting with an existing process-oriented ‘boids’ simulation, we explore a variety of techniques aimed at improving performance, gradually refactoring the original code. Successive improvements lead to a 10-fold improvement in performance, which we believe can still be […]
Jonathan Passerat-Palmbach
The race to computing power increases every day in the simulation community. A few years ago, scientists have started to harness the computing power of Graphics Processing Units (GPUs) to parallelize their simulations. As with any parallel architecture, not only the simulation model implementation has to be ported to the new parallel platform, but all […]
View View   Download Download (PDF)   
Page 1 of 512345

* * *

* * *

Like us on Facebook

HGPU group

151 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1252 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: