12403
Andrew L. Maas, Awni Y. Hannun, Christopher T. Lengerich, Peng Qi, Daniel Jurafsky, Andrew Y. Ng
Deep neural networks (DNNs) are now a central component of nearly all state-of-the-art speech recognition systems. Part of the promise of DNNs is their ability to represent increasingly complex functions as the number of DNN parameters increases. This paper investigates the performance of DNN-based hybrid speech recognition systems as DNN model size and training data […]
View View   Download Download (PDF)   
X. Chen, Y. Wang, X. Liu, M.J.F. Gales, P. C. Woodland
Recurrent neural network language models (RNNLMs) are becoming increasingly popular for a range of applications including speech recognition. However, an important issue that limits the quantity of data, and hence their possible application areas, is the computational cost in training. A standard approach to handle this problem is to use class-based outputs, allowing systems to […]
View View   Download Download (PDF)   
Simon Wiesler, Alexander Richard, Pavel Golik, Ralf Schluter, Hermann Ney
This paper describes the new release of RASR – the open source version of the well-proven speech recognition toolkit developed and used at RWTH Aachen University. The focus is put on the implementation of the NN module for training neural network acoustic models. We describe code design, configuration, and features of the NN module. The […]
View View   Download Download (PDF)   
Vicente Peruffo Minotto
Given the tendency of creating interfaces between human and machines that increasingly allow simple ways of interaction, it is only natural that research effort is put into techniques that seek to simulate the most conventional mean of communication humans use: the speech. In the human auditory system, voice is automatically processed by the brain in […]
View View   Download Download (PDF)   
Patrick Cardinal
The speed of processors has remained stable over the past few years. The trend may even be towards slower speeds in order to satisfy the ever increasing demands of energy efficiency. This tendency is already apparent in the area of mobile devices. In order to take full advantage of the processing power offered by modern […]
View View   Download Download (PDF)   
Haofeng Kou, Weijia Shang, Ian Lane, Jike Chong
In this paper, we update our previous research for Mel-Frequency Cepstral Coefficient (MFCC) feature extraction [1] and describe the optimizations required for improving throughput on the Graphics Processing Units (GPU). We not only demonstrate that the feature extraction process is suitable for GPUs and a substantial reduction in computation time can be obtained by performing […]
View View   Download Download (PDF)   
Jan Vanek, Jan Trmal, Josef V. Psutka, Josef Psutka
Gaussian mixture models (GMMs) are often used in various data processing and classification tasks to model a continuous probability density in a multi-dimensional space. In cases, where the dimension of the feature space is relatively high (e.g. in the automatic speech recognition (ASR)), GMM with a higher number of Gaussians with diagonal covariances (DC) instead […]
View View   Download Download (PDF)   
Lukas Machlica
The automatic speaker recognition made a significant progress in the last two decades. Huge speech corpora containing thousands of speakers recorded on several channels are at hand, and methods utilizing as much information as possible were developed. Nowadays state-of-the-art methods are based on Gaussian mixture models used to estimate relevant statistics from feature vectors extracted […]
View View   Download Download (PDF)   
Jungsuk Kim
We have developed a multi-user large vocabulary speech recognition system employing a fully composed one-level weighted finite state transducer (WFST) based network on a Graphics Processing Unit (GPU). This system improves the overall throughput and latency of speech recognition engine which processes multiple users’ utterances at the same time with efficient scheduling, parameter sharing, and […]
View View   Download Download (PDF)   
Holger Schwenk, Anthony Rousseau, Mohammed Attik
Language models play an important role in large vocabulary speech recognition and statistical machine translation systems. The dominant approach since several decades are back-off language models. Some years ago, there was a clear tendency to build huge language models trained on hundreds of billions of words. Lately, this tendency has changed and recent works concentrate […]
Jike Chong, Ekaterina Gonina, Dorothea Kolossa, Steffen Zeiler, Kurt Keutzer
Data layout, data placement, and synchronization processes are not usually part of a speech application expert’s daily concerns. Yet failure to carefully take these concerns into account in a highly parallel implementation on the graphics processing units (GPUs) could mean an order of magnitude of loss in application performance. In this paper we present an […]
View View   Download Download (PDF)   
Jort Gemmeke, Antti Hurmalainen, Tuomas Virtanen, Sun Yang
In previous work it was shown that, at least in principle, an exemplar-based approach to noise robust ASR is possible. The method, sparse representation based classification (SC), works by modelling noisy speech as a sparse linear combination of speech and noise exemplars. After recovering the sparsest possible linear combination of labelled exemplars, noise robust posterior […]
View View   Download Download (PDF)   
Page 1 of 212

* * *

* * *

Like us on Facebook

HGPU group

140 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1220 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: