13574

Applications

Dzmitry Razmyslovich, Guillermo Marcus, Markus Gipp, Marc Zapatka, Andreas Szillus
In this paper we present an implementation of the Smith-Waterman algorithm. The implementation is done in OpenCL and targets high-end GPUs. This implementation is capable of computing similarity indexes between reference and query sequences. The implementation is designed for the sequence alignment paths calculation. In addition, it is capable of handling very long reference sequences […]
Czeslaw Smutnicki, Jaroslaw Rudy, Dominik Zelazny
A new and very efficient parallel algorithm for the Fast Non-dominated Sorting of Pareto fronts is proposed. By decreasing its computational complexity, the application of the proposed method allows us to increase the speedup of the best up to now Fast and Elitist Multi-Objective Genetic Algorithm (NSGA-II) more than two orders of magnitude. Formal proofs […]
View View   Download Download (PDF)   
Jonas Martinez, Frederic Claux, Sylvain Lefebvre
In this paper, we propose to extend high quality Centroidal Voronoi Tessellation (CVT) remeshing techniques to the case of surfaces which are not defined by triangle meshes, such as implicit surfaces. Our key observation is that rasterization routines are usually available to visualize these alternative representations, most often as OpenGL shaders efficiently producing surface samples […]
View View   Download Download (PDF)   
Sushil K. Prasad, Michael McDermott, Satish Puri, Dhara Shah, Danial Aghajarian, Shashi Shekhar, Xun Zhou
We summarize the need and present our vision for accelerating geo-spatial computations and analytics using a combination of shared and distributed memory parallel platforms, with general-purpose Graphics Processing Units (GPUs) with 100s to 1000s of processing cores in a single chip forming a key architecture to parallelize over. A GPU can yield one-to-two orders of […]
View View   Download Download (PDF)   
Kevin Angstadt, Ed Harcourt
We demonstrate a speedup for database joins using a general purpose graphics processing unit (GPGPU). The technique is novel in that it operates on an SQL virtual machine model developed using CUDA. The implementation compiles an SQL statement to instructions of the virtual machine that are then executed in parallel on the GPU. We use […]
View View   Download Download (PDF)   
Paul Harvey, Saji Hameed, Wim Vanderbauwhede
FLEXPART is a popular simulator that models the transport and diffusion of air pollutants, based on the Lagrangian approach. It is capable of regional and global simulation and supports both forward and backward runs. A complex model like this contains many calculations suitable for parallelisation. Recently, a GPU-accelerated version of the simulator (FLEXCPP) has been […]
View View   Download Download (PDF)   
Soichiro Ikuno, Susumu Nakata, Yuta Hirokawa, Taku Itoh
High performance computing of Meshless Time Domain Method (MTDM) on multi-GPU using the supercomputer HA-PACS (Highly Accelerated Parallel Advanced system for Computational Sciences) at University of Tsukuba is investigated. Generally, the finite difference time domain (FDTD) method is adopted for the numerical simulation of the electromagnetic wave propagation phenomena. However, the numerical domain must be […]
View View   Download Download (PDF)   
Prakash N Ekhande, Sharad A Rumane, Mayur A Ahire
The Segmentation of text from poorly degraded document images is a very hard due to the high intravariation between the document background and the foreground text of different document images. The algorithms used for Image processing take more time for execution on a single core processor. Graphics Processing Unit (GPU) is becoming most popular due […]
View View   Download Download (PDF)   
Stanley Tsang
Two well-known bipartite graph matching algorithms, the Gale-Shapley algorithm and the Hungarian (Kuhn-Munkres) algorithm, has been ported to run on General-Purpose Graphics Processing Units (GPGPU) using kernels written with the CUDA programming model. This was done with the goal of characterising and assessing the performance and behaviour of these matching algorithms on the GPU, and […]
View View   Download Download (PDF)   
Angelos Trigkas
OpenCL SYCL is a new heterogeneous and parallel programming framework created by the Khronos Group that tries to bring OpenCL programming into C++. In particular, it enables C++ developers to create OpenCL kernels, using all the popular C++ features, such as classes, inheritance and templates. What is more, it dramatically reduces programming effort and complexity, […]
View View   Download Download (PDF)   
Philippe Helluy, Thomas Strub, Michel Massaro, Malcolm Roberts
Hyperbolic conservation laws are important mathematical models for describing many phenomena in physics or engineering. The Finite Volume (FV) method and the Discontinuous Galerkin (DG) methods are two popular methods for solving conservation laws on computers. Those two methods are good candidates for parallel computing: a) they require a large amount of uniform and simple […]
View View   Download Download (PDF)   
Rashid Kaleem, Sreepathi Pai, Keshav Pingali
Irregular algorithms such as Stochastic Gradient Descent (SGD) can benefit from the massive parallelism available on GPUs. However, unlike in data-parallel algorithms, synchronization patterns in SGD are quite complex. Furthermore, scheduling for scale-free graphs is challenging. This work examines several synchronization strategies for SGD, ranging from simple locking to conflict-free scheduling. We observe that static […]
View View   Download Download (PDF)   
Page 1 of 76612345...102030...Last »

* * *

* * *

Like us on Facebook

HGPU group

215 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1396 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: