13408

Applications

Jimmy SJ. Ren, Li Xu
We recently have witnessed many ground-breaking results in machine learning and computer vision, generated by using deep convolutional neural networks (CNN). While the success mainly stems from the large volume of training data and the deep network architectures, the vector processing hardware (e.g. GPU) undisputedly plays a vital role in modern CNN implementations to support […]
Alexander Bussiere
When designing a safety system, the faster the response time, the greater the reflexes of the system to hazards. As more commercial interest in autonomous and assisted vehicles grows, the number one concern is safety. If the system cannot react as fast as or faster than an average human, then the public will deem it […]
View View   Download Download (PDF)   
Chhaya Patel
The objective of this paper is to use different optimization strategies on multicore GPU architecture. Here for performance evaluation we have used parallel reduction algorithm. GPU on-chip shared memory is very fast than local and global memory. Shared memory latency is roughly 100x lower than non-cached global memory (make sure that there are no bank […]
View View   Download Download (PDF)   
Ru Zhu
A finite-difference Micromagnetic simulation code written in MATLAB is presented with Graphics Processing Unit (GPU) acceleration. The high performance of Graphics Processing Unit (GPU) is demonstrated compared to a typical Central Processing Unit (CPU) based code. The speed-up of GPU to CPU is shown to be greater than 30 for problems with larger sizes on […]
Edoardo Paone
Parallel programming is a skill which software engineers no longer can do without, since multi- and many-core architectures have been widely adopted for general-purpose computing platforms. In 2006 Intel introduced the first multi-core processor on the consumer market and, at the same time, NVIDIA unveiled CUDA, a programming paradigm to exploit Graphics Processing Units (GPUs) […]
View View   Download Download (PDF)   
Andrew Lavin
This paper describes maxDNN, a computationally efficient convolution kernel for deep learning with the NVIDIA Maxwell GPU. maxDNN reaches 96.3% computational efficiency on typical deep learning network architectures using a single kernel. The design combines ideas from cuda-convnet2 with the Maxas SGEMM assembly code. We only address forward propagation (FPROP) operation of the network, but […]
View View   Download Download (PDF)   
Jan Verschelde, Xiangcheng Yu
Numerical continuation methods apply predictor-corrector algorithms to track a solution path defined by a family of systems, the so-called homotopy. The systems we consider are defined by polynomials in several variables with complex coefficients. For larger dimensions and degrees, the numerical conditioning worsens and hardware double precision becomes often insufficient to reach the end of […]
B. R. Schlei
The novel "Volume-Enclosing Surface exTraction Algorithm" (VESTA) generates triangular isosurfaces from computed tomography volumetric images and/or three-dimensional (3D) simulation data. Here, we present various benchmarks for GPU-based code implementations of both VESTA and the current state-of-the-art Marching Cubes Algorithm (MCA). One major result of this study is that VESTA runs significantly faster than the MCA.
View View   Download Download (PDF)   
Yun Tian, Bojian Xu
Repeat finding in strings has important applications in subfields such as computational biology. The challenge of finding the longest repeats covering particular string positions was recently proposed and solved by Ileri et al., using a total of the optimal O(n) time and space, where n is the string size. However, their solution can only find […]
View View   Download Download (PDF)   
Blesson Varghese
The risk of reinsurance portfolios covering globally occurring natural catastrophes, such as earthquakes and hurricanes, is quantified by employing simulations. These simulations are computationally intensive and require large amounts of data to be processed. The use of many-core hardware accelerators, such as the Intel Xeon Phi and the NVIDIA Graphics Processing Unit (GPU), are desirable […]
View View   Download Download (PDF)   
Lukasz Laniewski-Wollk, Jacek Rokicki
In this paper we present a topology optimization technique applicable to a broad range of flow design problems. We propose also a discrete adjoint formulation effective for a wide class of Lattice Boltzmann Methods (LBM). This adjoint formulation is used to calculate sensitivity of the LBM solution to several type of parameters, both global and […]
View View   Download Download (PDF)   
Matthew C. Overby
Urban form modifies the microclimate and may trap in heat and pollutants. This causes a rise of energy demands to heat and cool building interiors. Mitigating these effects is a growing concern due to the increasing urbanization of major cities. Researchers, urban planners, and city architects rely on sophisticated simulations to investigate how to reduce […]
View View   Download Download (PDF)   
Page 1 of 76112345...102030...Last »

* * *

* * *

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: nVidia CUDA Toolkit 6.5.14, AMD APP SDK 3.0
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2015 hgpu.org

All rights belong to the respective authors

Contact us: