12945
Steven Gurfinkel
Many computer systems now include both CPUs and programmable GPUs. OpenCL, a new programming framework, can program individual CPUs or GPUs; however, distributing a problem across multiple devices is more difficult. This thesis contributes three OpenCL runtimes that automatically distribute a problem across multiple devices: DualCL and m2sOpenCL, which distribute tasks across a single system’s […]
View View   Download Download (PDF)   
Mehmet Ufuk Buyuksahin
Galois Field arithmetic has been used very frequently in popular security and error-correction applications. Montgomery multiplication is among the suitable methods used for accelerating modular multiplication, which is the most time consuming basic arithmetic operation. Montgomery multiplication is also suitable to be implemented in parallel. OpenCL, which is a portable, heterogeneous and parallel programming framework, […]
View View   Download Download (PDF)   
Matthew Thomas Calef, John Greaton Wohlbier
We describe the problem of iterating over mesh zones and iterating over material data within a zone, in the context of relatively new compute architectures. We present an example for how this can be done in a way that is portable across parallel programming environments and can be made to perform well. We offer a […]
View View   Download Download (PDF)   
Karl Rupp, Josef Weinbub, Ansgar Jungel, Tibor Grasser
We revisit the implementation of iterative solvers on discrete graphics processing units and demonstrate the benefit of implementations using extensive kernel fusion for pipelined formulations over conventional implementations of classical formulations. The proposed implementations with both CUDA and OpenCL are freely available in ViennaCL and achieve up to three-fold performance gains when compared to other […]
James A. Ross, David A. Richie, Song J. Park, Dale R. Shires, Lori L. Pollock
An observation in supercomputing in the past decade illustrates the transition of pervasive commodity products being integrated with the world’s fastest system. Given today’s exploding popularity of mobile devices, we investigate the possibilities for high performance mobile computing. Because parallel processing on mobile devices will be the key element in developing a mobile and computationally […]
View View   Download Download (PDF)   
Michael Gowanlock, Henri Casanova
Applications in many domains require processing moving object trajectories. In this work, we focus on a trajectory similarity search that finds all trajectories within a given distance of a query trajectory over a time interval, which we call the distance threshold similarity search. We develop three indexing strategies with spatial, temporal and spatiotemporal selectivity for […]
View View   Download Download (PDF)   
Stefan Bartels
Navier-Stokes Equations are a mathematical model to describe the behaviour of fluids. They have proven to represent real fluid flows quite well and are base for many fluid simulations. In order to exploit the performance provided by modern many-core systems, fluid simulation algorithms must be able to efficiently solve the Navier-Stokes Equations in parallel. The […]
View View   Download Download (PDF)   
Andrej Bukosek
We introduce an interactive Monte Carlo path tracer that uses the OpenCL framework. A path tracer draws a photo-realistic image of a 3D scene by simulating physical effects of light. Interactivity enables the user to move around the scene in real time, while OpenCL makes it possible to run the same code on either CPU […]
View View   Download Download (PDF)   
Jose Antonio Belloch Rodriguez
Multichannel acoustic signal processing has undergone major development in recent years due to the increased complexity of current audio processing applications. People want to collaborate through communication with the feeling of being together and sharing the same environment, what is considered as Immersive Audio Schemes. In this phenomenon, several acoustic effects are involved: 3D spatial […]
View View   Download Download (PDF)   
Luigi Nardi, Bruno Bodin, M. Zeeshan Zia, John Mawer, Andy Nisbet, Paul H. J. Kelly, Andrew J. Davison, Mikel Lujan, Michael F. P. O'Boyle, Graham Riley, Nigel Topham, Steve Furber
Real-time dense computer vision and SLAM offer great potential for a new level of scene modelling, tracking and real environmental interaction for many types of robot, but their high computational requirements mean that use on mass market embedded platforms is challenging. Meanwhile, trends in low-cost, low-power processing are towards massive parallelism and heterogeneity, making it […]
View View   Download Download (PDF)   
Kamil Ksiazek, Piotr Sapiecha
One of the major problems in database management systems is handling large amounts of data while providing short response time. Problem is not only proper manner of storing records but also efficient way of processing them. In the meantime GPUs developed computational power many times greater than that offered by comparable CPUs. In our research […]
View View   Download Download (PDF)   
Sreeram Potluri
Accelerators (such as NVIDIA GPUs) and coprocessors (such as Intel MIC/Xeon Phi) are fueling the growth of next-generation ultra-scale systems that have high compute density and high performance per watt. However, these many-core architectures cause systems to be heterogeneous by introducing multiple levels of parallelism and varying computation/communication costs at each level. Application developers also […]
View View   Download Download (PDF)   
Page 1 of 10012345...102030...Last »

* * *

* * *

Like us on Facebook

HGPU group

166 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1271 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: