15448
Pablo Benitez-Llambay, Frederic Masset
We present the FARGO3D code, recently publicly released. It is a magnetohydrodynamics code developed with special emphasis on protoplanetary disks physics and planet-disk interactions, and parallelized with MPI. The hydrodynamics algorithms are based on finite difference upwind, dimensionally split methods. The magnetohydrodynamics algorithms consist of the constrained transport method to preserve the divergence-free property of […]
Pavel A. Lebedev
We present results on integration of two major GPGPU APIs with reactor-based event processing model in C++ that utilizes coroutines. With current lack of universally usable GPGPU programming interface that gives optimal performance and debates about the style of implementing asynchronous computing in C++, we present a working implementation that allows a uniform and seamless […]
View View   Download Download (PDF)   
C. Kristopher Garrett, Cory Hauck, Judith Hill
We present computational advances and results in the implementation of an entropy-based moment closure, M_N, in the context of linear kinetic equations, with an emphasis on heterogeneous and large-scale computing platforms. Entropy-based closures are known in several cases to yield more accurate results than closures based on standard spectral approximations, such as P_N, but the […]
View View   Download Download (PDF)   
Giuseppe Cerati, Peter Elmer, Steven Lantz, Kevin McDermott, Dan Riley, Matevz Tadel, Peter Wittich, Frank Wurthwein, Avi Yagil
Power density constraints are limiting the performance improvements of modern CPUs. To address this we have seen the introduction of lower-power, multi-core processors such as GPGPU, ARM and Intel MIC. To stay within the power density limits but still obtain Moore’s Law performance/price gains, it will be necessary to parallelize algorithms to exploit larger numbers […]
View View   Download Download (PDF)   
A. Badalov, D. Campora, N. Neufeld, X. Vilasis-Cardona
The LHCb detector is due to be upgraded for processing high-luminosity collisions, which will increase data bandwidth to the event filter farm from 100 GB/s to 4 TB/s, encouraging us to look for new ways of accelerating Online reconstruction. The Coprocessor Manager is a new framework for integrating LHCb’s existing computation pipelines with massively parallel […]
View View   Download Download (PDF)   
Mohit Shridhar
In particle physics, Higgs Boson to tau-tau decay signals are notoriously difficult to identify due to the presence of severe background noise generated by other decaying particles. Our approach uses neural networks to classify events as signals or background noise.
View View   Download Download (PDF)   
Rana Nandi, Stefan Schramm
We study the effect of isospin-dependent nuclear forces on the pasta phase in the inner crust of neutron stars. To this end we model the crust within the framework of quantum molecular dynamics (QMD). For maximizing the numerical performance, the newly developed code has been implemented on GPU processors. As a first application of the […]
View View   Download Download (PDF)   
Gabor Biro, Gergely Gabor Barnafoldi, Endre Futo
High Energy Physics (HEP) needs a huge amount of computing resources. In addition data acquisition, transfer, and analysis require a well developed infrastructure too. In order to prove new physics disciplines it is required to higher the luminosity of the accelerator facilities, which produce more-and-more data in the experimental detectors. Both testing new theories and […]
View View   Download Download (PDF)   
Feng Yuan, Tang Xiaobin, Gong Xiaoyan
This paper puts forward a new FDTD parallel algorithm, which is developed based on the distributed platform, the algorithm was debugged in Shanghai Jiao-tong University for the high performance computing center GPU cluster, "Rubik’s Cube" commercial super computer at Shanghai Supercomputer Center and "divinity blue" domestic super computer platform at the National Supercomputing Center in […]
View View   Download Download (PDF)   
Olav Emil Eiksund
A Particle-In-Cell code is a common particle simulation method often used to simulate the behaviour of plasma. In this work, a parallel PIC code is developed in CUDA, with a focus on how to adapt the method for multiple GPUs. An electrostatic three dimensional PIC code is developed, with an FFT-based solver using the cuFFT […]
View View   Download Download (PDF)   
Simon Heybrock, Matthias Rottmann, Peter Georg, Tilo Wettig
We present details of our implementation of the Wuppertal adaptive algebraic multigrid code DD-alpha AMG on SIMD architectures, with particular emphasis on the Intel Xeon Phi processor (KNC) used in QPACE 2. As a smoother, the algorithm uses a domain-decomposition-based solver code previously developed for the KNC in Regensburg. We optimized the remaining parts of […]
View View   Download Download (PDF)   
Alexander V. Smirnov
This paper presents a new major release of the program FIESTA (Feynman Integral Evaluation by a Sector decomposiTion Approach). The new release is mainly aimed at optimal performance at large scales when one is increasing the number of sampling points in order to reduce the uncertainty estimates. The release now supports graphical processor units (GPU) […]
Page 1 of 5912345...102030...Last »

* * *

* * *

Follow us on Twitter

HGPU group

1748 peoples are following HGPU @twitter

Like us on Facebook

HGPU group

371 people like HGPU on Facebook

HGPU group © 2010-2016 hgpu.org

All rights belong to the respective authors

Contact us: