12708
Keisuke Konno, Qiang Chen, Hajime Katsuda
Various guidelines for acceleration of MoM by GPU computing are summarized. Acceleration of direct/iterative solver for MoM by using GPU is realized. Quantitative study of computing time shows the performance of each guideline.
View View   Download Download (PDF)   
Loren Schwiebert, Eyad Hailat, Kamel Rushaidat, Jason Mick, Jeffrey Potoff
Maximizing the performance potential of the modern day GPU architecture requires judicious utilization of available parallel resources. Although dramatic reductions can often be obtained through straightforward mappings, further performance improvements often require algorithmic redesigns to more closely exploit the target architecture. In this paper, we focus on efficient molecular simulations for the GPU and propose […]
View View   Download Download (PDF)   
Rida Assaf
Problems in many areas give rise to computationally expensive integrals that beg the need of efficient techniques to solve them, e.g., in computational finance for the modeling of cash flows; for the computation of Feynman loop integrals in high energy physics; and in stochastic geometry with applications to computer graphics. We demonstrate feasible numerical approaches […]
View View   Download Download (PDF)   
Doug Schouten, Adam DeAbreu, Bernd Stelzer
The matrix element method utilizes ab initio calculations of probability densities as powerful discriminants for processes of interest in experimental particle physics. The method has already been used successfully at previous and current collider experiments. However, the computational complexity of this method for final states with many particles and degrees of freedom sets it at […]
View View   Download Download (PDF)   
Dan Mazur, Jeremy S. Heyl
We give an overview of the worldline numerics technique, and discuss the parallel CUDA implementation of a worldline numerics algorithm. In the worldline numerics technique, we wish to generate an ensemble of representative closed-loop particle trajectories, and use these to compute an approximate average value for Wilson loops. We show how this can be done […]
View View   Download Download (PDF)   
Nicolas Bigaouette
Clusters of atoms have remarkable optical properties that were exploited since the antiquity. It was only during the late 20th century though that their production was better controlled and opened the door to a better understanding of matter. Lasers are the tool of choice to study these nanoscopic objects so scientists have been blowing clusters […]
View View   Download Download (PDF)   
Brian Hamilton, Stefan Bilbao, Craig J. Webb
Viscothermal effects in air lead to a damping of high frequencies over time. Such effects cannot be neglected in large-scale room acoustics simulations for the full audible bandwidth. In this study, full-bandwidth room acoustics is modelled using a variant of the three-dimensional wave equation including viscothermal losses in air following from a simplification of the […]
View View   Download Download (PDF)   
Christos G Xanthis, Ioannis E Venetis, Anthony H Aletras
BACKGROUND: MRI physics simulators have been developed in the past for optimizing imaging protocols and for training purposes. However, these simulators have only addressed motion within a limited scope. The purpose of this study was the incorporation of realistic motion, such as cardiac motion, respiratory motion and flow, within MRI simulations in a high performance […]
View View   Download Download (PDF)   
Styliani Loukatou, Louis Papageorgiou, Paraskevas Fakourelis, Arianna Filntisi, Eleftheria Polychronidou, Ioannis Bassis, Vasileios Megalooikonomou, Wojciech Makalowski, Dimitrios Vlachakis, Sophia Kossida
Bioinformatics is the scientific field that focuses on the application of computer technology to the management of biological information. Over the years, bioinformatics applications have been used to store, process and integrate biological and genetic information, using a wide range of methodologies. One of the most de novo techniques used to understand the physical movements […]
View View   Download Download (PDF)   
Arne Vansteenkiste, Jonathan Leliaert, Mykola Dvornik, Felipe Garcia-Sanchez, Bartel Van Waeyenberge
We report on the design, verification and performance of mumax3, an open-source GPU-accelerated micromagnetic simulation program. This software solves the time- and space dependent magnetization evolution in nano- to micro scale magnets using a finite-difference discretization. Its high performance and low memory requirements allow for large-scale simulations to be performed in limited time and on […]
M. Rieke, T. Trost, R. Grauer
We present a way to combine Vlasov and two-fluid codes for the simulation of a collisionless plasma in large domains while keeping full information of the velocity distribution in localized areas of interest. This is made possible by solving the full Vlasov equation in one region while the remaining area is treated by a 5-moment […]
View View   Download Download (PDF)   
Jie Liu, Chunye Gong, Weimin Bao, Guojian Tang, Yuewen Jiang
We present a parallel GPU solution of the Caputo fractional reaction-diffusion equation in one spatial dimension with explicit finite difference approximation. The parallel solution, which is implemented with CUDA programming model, consists of three procedures: preprocessing, parallel solver, and postprocessing. The parallel solver involves the parallel tridiagonal matrix vector multiplication, vector-vector addition, and constant vector […]
View View   Download Download (PDF)   
Page 1 of 5212345...102030...Last »

* * *

* * *

Like us on Facebook

HGPU group

140 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1218 peoples are following HGPU @twitter

Featured events

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: