Computing platforms equipped with accelerators like GPUs have proven to provide great computational power. However, exploiting such platforms for existing scientific applications is not a trivial task. Current GPU programming frameworks such as CUDA C/C++ require low-level programming from the developer in order to achieve high performance code. As a result porting of applications to […]

August 27, 2014 by hgpu

A model of a multilayer device with non-trivial geometrical and material structure and its working process is suggested. The thermal behavior of the device as one principle characteristic is simulated. The algorithm for solving the non-stationary heat conduction problem with a time-dependent periodical heating source is suggested. The algorithm is based on finite difference explicit–implicit […]

August 27, 2014 by hgpu

Various guidelines for acceleration of MoM by GPU computing are summarized. Acceleration of direct/iterative solver for MoM by using GPU is realized. Quantitative study of computing time shows the performance of each guideline.

August 26, 2014 by hgpu

Maximizing the performance potential of the modern day GPU architecture requires judicious utilization of available parallel resources. Although dramatic reductions can often be obtained through straightforward mappings, further performance improvements often require algorithmic redesigns to more closely exploit the target architecture. In this paper, we focus on efficient molecular simulations for the GPU and propose […]

August 19, 2014 by hgpu

Problems in many areas give rise to computationally expensive integrals that beg the need of efficient techniques to solve them, e.g., in computational finance for the modeling of cash flows; for the computation of Feynman loop integrals in high energy physics; and in stochastic geometry with applications to computer graphics. We demonstrate feasible numerical approaches […]

August 3, 2014 by hgpu

The matrix element method utilizes ab initio calculations of probability densities as powerful discriminants for processes of interest in experimental particle physics. The method has already been used successfully at previous and current collider experiments. However, the computational complexity of this method for final states with many particles and degrees of freedom sets it at […]

August 2, 2014 by hgpu

We give an overview of the worldline numerics technique, and discuss the parallel CUDA implementation of a worldline numerics algorithm. In the worldline numerics technique, we wish to generate an ensemble of representative closed-loop particle trajectories, and use these to compute an approximate average value for Wilson loops. We show how this can be done […]

July 29, 2014 by hgpu

Clusters of atoms have remarkable optical properties that were exploited since the antiquity. It was only during the late 20th century though that their production was better controlled and opened the door to a better understanding of matter. Lasers are the tool of choice to study these nanoscopic objects so scientists have been blowing clusters […]

July 28, 2014 by hgpu

Viscothermal effects in air lead to a damping of high frequencies over time. Such effects cannot be neglected in large-scale room acoustics simulations for the full audible bandwidth. In this study, full-bandwidth room acoustics is modelled using a variant of the three-dimensional wave equation including viscothermal losses in air following from a simplification of the […]

July 28, 2014 by hgpu

BACKGROUND: MRI physics simulators have been developed in the past for optimizing imaging protocols and for training purposes. However, these simulators have only addressed motion within a limited scope. The purpose of this study was the incorporation of realistic motion, such as cardiac motion, respiratory motion and flow, within MRI simulations in a high performance […]

July 6, 2014 by hgpu

Bioinformatics is the scientific field that focuses on the application of computer technology to the management of biological information. Over the years, bioinformatics applications have been used to store, process and integrate biological and genetic information, using a wide range of methodologies. One of the most de novo techniques used to understand the physical movements […]

July 4, 2014 by hgpu

We report on the design, verification and performance of mumax3, an open-source GPU-accelerated micromagnetic simulation program. This software solves the time- and space dependent magnetization evolution in nano- to micro scale magnets using a finite-difference discretization. Its high performance and low memory requirements allow for large-scale simulations to be performed in limited time and on […]

July 1, 2014 by hgpu