This paper presents a new major release of the program FIESTA (Feynman Integral Evaluation by a Sector decomposiTion Approach). The new release is mainly aimed at optimal performance at large scales when one is increasing the number of sampling points in order to reduce the uncertainty estimates. The release now supports graphical processor units (GPU) […]

November 12, 2015 by hgpu

We present the implementation of twisted mass fermion operators for the QPhiX library. We analyze the performance on the Intel Xeon Phi (Knights Corner) coprocessor as well as on Intel Xeon Haswell CPUs. In particular, we demonstrate that on the Xeon Phi 7120P the Dslash kernel is able to reach 80% of the theoretical peak […]

November 4, 2015 by hgpu

We implement the Lanczos algorithm on an Intel Xeon Phi coprocessor and compare its performance to a multi-core Intel Xeon CPU and an NVIDIA graphics processor. The Xeon and the Xeon Phi are parallelized with OpenMP and the graphics processor is programmed with CUDA. The performance is evaluated by measuring the execution time of a […]

November 4, 2015 by hgpu

In this dissertation, the hardware and API architectures of GPUs are investigated, and the corresponding acceleration techniques are applied on the traditional frequency domain finite element method (FEM), the element-level time-domain methods, and the nonlinear discontinuous Galerkin method. First, the assembly and the solution phases of the FEM are parallelized and mapped onto the granular […]

October 31, 2015 by hgpu

We report on our efforts to implement overlap fermions on NVIDIA GPUs using CUDA, commenting on the algorithms used, implemetation details, and the performance of our code.

October 27, 2015 by hgpu

The Gyrokinetic Toroidal Code at Princeton (GTC-P) is a highly scalable and portable particle-in-cell (PIC) code. It solves the 5D Vlasov-Poisson equation featuring efficient utilization of modern parallel computer architectures at the petascale and beyond. Motivated by the goal of developing a modern code capable of dealing with the physics challenge of increasing problem size […]

October 25, 2015 by hgpu

Emerging processor architectures such as GPUs and Intel MICs provide a huge performance potential for high performance computing. However developing software using these hardware accelerators introduces additional challenges for the developer such as exposing additional parallelism, dealing with different hardware designs and using multiple development frameworks in order to use devices from different vendors. The […]

September 29, 2015 by hgpu

We design and implement HPMC, a scalable hard particle Monte Carlo simulation toolkit, and release it open source as part of HOOMD-blue. HPMC runs in parallel on many CPUs and many GPUs using domain decomposition. We employ BVH trees instead of cell lists on the CPU for fast performance, especially with large particle size disparity, […]

September 17, 2015 by hgpu

Advanced Simulation Library is a free and open source multiphysics simulation software package and a tool for solving Partial Differential Equations. It has significant user base across many areas of engineering and science, from both industrial and academic organizations. ASL utilizes only the methods that allow efficient parallelization: Lattice Boltzmann Methods, Explicit Finite Difference, Matrix […]

September 3, 2015 by hgpu

A principally novel approach towards solving the few-particle (many-dimensional) quantum scattering problems is described. The approach is based on a complete discretization of few-particle continuum and usage of massively parallel computations of integral kernels for scattering equations by means of GPU. The discretization for continuous spectrum of a few-particle Hamiltonian is realized with a projection […]

September 3, 2015 by hgpu

We present an algorithm to simulate the many-body depletion interaction between anisotropic colloids in an implicit way, integrating out the degrees of freedom of the depletants, which we treat as an ideal gas. Because the depletant particles are statistically independent and the depletion interaction is short-ranged, depletants are randomly inserted in parallel into the excluded […]

August 31, 2015 by hgpu

The study of disordered spin systems through Monte Carlo simulations has proven to be a hard task due to the adverse energy landscape present at the low temperature regime, making it difficult for the simulation to escape from a local minimum. Replica based algorithms such as the Exchange Monte Carlo (also known as parallel tempering) […]

August 27, 2015 by hgpu