Cody Rivera, Jieyang Chen, Nan Xiong, Shuaiwen Leon Song, Dingwen Tao
February 16, 2020 by
hgpuBérenger Bramas, Philippe Helluy, Laura Mendoza, Bruno Weber
Jiajia Li, Mahesh Lakshminarasimhan, Xiaolong Wu, Ang Li, Catherine Olschanowsky, Kevin Barker
Tags: Benchmarking, Computer science, CUDA, Linear Algebra, Machine learning, nVidia, nVidia DGX-1, Package, Performance, Tesla P100, Tesla V100
Jing Gao, N. Anantrasirichai, David Bull
December 29, 2019 by
hgpuHåvard H. Holm, André R. Brodtkorb, Martin L. Sætra
Tags: Computer science, CUDA, Energy-efficient computing, nVidia, nVidia GeForce GTX 780, nVidia GeForce GTX 840 M, OpenCL, Performance, Python, Tesla K20, Tesla M2090, Tesla P100, Tesla V100
Ilia Sivkov, Alfio Lazzaro, Jurg Hutter
Tags: Computer science, CUDA, Data mining, Linear Algebra, Machine learning, Matrix multiplication, nVidia, Package, Signal processing, Sparse matrix, Tesla P100
Oded Green, James Fox, Jeffrey Young, Jun Shirako, David Bader
Martin Bauer, Sebastian Eibl, Christian Godenschwager, Nils Kohl, Michael Kuron, Christoph Rettinger, Florian Schornbaum, Christoph Schwarzmeier, Dominik Thönnes, Harald Köstler, Ulrich Rüde
Tags: Code generation, CUDA, Heterogeneous systems, Lattice Boltzmann model, MPI, nVidia, Package, Particle simulation, performance portability, Physics, Tesla P100
Yuxin Wang, Qiang Wang, Shaohuai Shi, Xin He, Zhenheng Tang, Kaiyong Zhao, Xiaowen Chu
Tags: AI, AMD Radeon R7, ATI, Computer science, Deep learning, Neural networks, nVidia, PyTorch, TensorFlow, Tesla P100, Tesla V100, TPU
September 22, 2019 by
hgpuSnehil Verma, Qinzhe Wu, Bagus Hanindhito, Gunjan Jha, Eugene B. John, Ramesh Radhakrishnan, Lizy K. John
September 1, 2019 by
hgpu