12995
Achal Shah, Angshul Majumdar
Solving linear inverse problems where the solution is known to be sparse is of interest to both signal processing and machine learning research. The standard algorithms for solving such problems are sequential in nature – they tend to be slow for large scale problems. In the past, researchers have used Graphics Processing Units to accelerate […]
View View   Download Download (PDF)   
Xiangyu Guo, Xing Liu, Peng Xu, Zhihui Du, Edmond Chow
The particle-mesh spreading operation maps a value at an arbitrary particle position to contributions at regular positions on a mesh. This operation is often used when a calculation involving irregular positions is to be performed in Fourier space. We study several approaches for particle mesh spreading on GPUs. A central concern is the use of […]
View View   Download Download (PDF)   
Amirsaman Farrokhpanah, Hanif Montazeri, Javad Mostaghimi
Capabilities of using Graphic Processing Units (GPU) as a computational tool in CFD have been investigated here. Several solvers for solving linear matrix equations have been benchmarked on GPU and is shown that Gauss-Seidle gives the best performance for the GPU architecture. Compared to CPU on a case of lid-driven cavity flow, speedups of up […]
View View   Download Download (PDF)   
David Markvica
The longest common subsequence (LCS) problem is one of the classic problems in string processing. It is commonly used in file comparison, pattern recognition, and computational biology as a measure of sequence similarity. Given a set of strings, the LCS is the longest string that is a subsequence of every string in the set. For […]
View View   Download Download (PDF)   
David D. Prentiss
This work introduces a bilevel, stochastic optimization problem aimed at robust, regional evacuation network design and shelter location under uncertain hazards. A regional planner, acting as a Stackelberg leader, chooses among evacuation-route contraflow operation and shelter location to minimize the expected risk exposure to evacuees. Evacuees then seek an equilibrium with respect to risk exposure […]
View View   Download Download (PDF)   
Jose M Gonzalez-Linares, Antonio Fuentes-Alventosa, Juan Gomez-Luna, Nicolas Guil
Data compression is the process of representing information in a compact form, in order to reduce the storage requirements and, hence, communication bandwidth. It has been one of the critical enabling technologies for the ongoing digital multimedia revolution for decades. In the variable-length encoding (VLE) compression method, most frequently occurring symbols are replaced by codes […]
View View   Download Download (PDF)   
Marwan Abdellah
For embarrassingly parallel algorithms, a Graphics Processing Unit (GPU) outperforms a traditional CPU on price-per-flop and price-per-watt by at least one order of magnitude. This had led to the mapping of signal and image processing algorithms, and consequently their applications, to run entirely on GPUs. This paper presents CUFFTSHIFT, a ready-to-use GPU-accelerated library, that implements […]
Piotr Przymus
In recent years, processing and exploration of time series has experienced a noticeable interest. Growing volumes of data and needs of efficient processing pushed the research in new directions, including hardware based solutions. Graphics Processing Units (GPU) have significantly more applications than just rendering images. They are also used in general purpose computing to solve […]
View View   Download Download (PDF)   
Zhenwen Dai, Andreas Damianou, James Hensman, Neil Lawrence
In this work, we present an extension of Gaussian process (GP) models with sophisticated parallelization and GPU acceleration. The parallelization scheme arises naturally from the modular computational structure w.r.t. datapoints in the sparse Gaussian process formulation. Additionally, the computational bottleneck is implemented with GPU acceleration for further speed up. Combining both techniques allows applying Gaussian […]
View View   Download Download (PDF)   
Yunpeng Cao
To monitor bad information spreading in microblog system, large-scale data from microblog must be processed in real time. This needs high cost-effective parallel schemes. A parallel processing method on GPUs was put forward to monitor massive microblog. The proposed scheme can fully exploit the GPU feature to schedule massive threads for data-intensive tasks. The detailed […]
View View   Download Download (PDF)   
Chang Won Lee, Tae-Young Choe
Although integral histogram enables histogram computation of a sub-area within constant time, construction of the integral histogram requires O(nm) steps for n x m sized image. Such construction time can be reduced using parallel prefix sum algorithm. Mark Harris proposed an efficient parallel prefix sum and implemented it using CUDA GPGPU. Mark Harris’ algorithm has […]
View View   Download Download (PDF)   
Elisangela Silva Dias, Diane Castonguay, Humberto Longo, Walid Abdala Rfaei Jradi, Hugo A. D. do Nascimento
Finding chordless cycles is an important theoretical problem in the Graph Theory area. It also can be applied to practical problems such as discover which predators compete for the same food in ecological networks. Motivated by the problem of theoretical interest and also by its significant practical importance, we present in this paper a parallel […]
View View   Download Download (PDF)   
Page 1 of 24212345...102030...Last »

* * *

* * *

Like us on Facebook

HGPU group

171 people like HGPU on Facebook

Follow us on Twitter

HGPU group

1282 peoples are following HGPU @twitter

* * *

Free GPU computing nodes at hgpu.org

Registered users can now run their OpenCL application at hgpu.org. We provide 1 minute of computer time per each run on two nodes with two AMD and one nVidia graphics processing units, correspondingly. There are no restrictions on the number of starts.

The platforms are

Node 1
  • GPU device 0: AMD/ATI Radeon HD 5870 2GB, 850MHz
  • GPU device 1: AMD/ATI Radeon HD 6970 2GB, 880MHz
  • CPU: AMD Phenom II X6 @ 2.8GHz 1055T
  • RAM: 12GB
  • OS: OpenSUSE 13.1
  • SDK: AMD APP SDK 2.9
Node 2
  • GPU device 0: AMD/ATI Radeon HD 7970 3GB, 1000MHz
  • GPU device 1: nVidia GeForce GTX 560 Ti 2GB, 822MHz
  • CPU: Intel Core i7-2600 @ 3.4GHz
  • RAM: 16GB
  • OS: OpenSUSE 12.2
  • SDK: nVidia CUDA Toolkit 6.0.1, AMD APP SDK 2.9

Completed OpenCL project should be uploaded via User dashboard (see instructions and example there), compilation and execution terminal output logs will be provided to the user.

The information send to hgpu.org will be treated according to our Privacy Policy

HGPU group © 2010-2014 hgpu.org

All rights belong to the respective authors

Contact us: